論文の概要: Learning to refine domain knowledge for biological network inference
- arxiv url: http://arxiv.org/abs/2410.14436v1
- Date: Fri, 18 Oct 2024 12:53:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:06.335805
- Title: Learning to refine domain knowledge for biological network inference
- Title(参考訳): 生物ネットワーク推論のためのドメイン知識の洗練
- Authors: Peiwen Li, Menghua Wu,
- Abstract要約: 摂動実験により、生物学者は興味のある変数間の因果関係を発見することができる。
これらのデータの空間性と高次元性は因果構造学習アルゴリズムに重大な課題をもたらす。
そこで本研究では,データ観測に基づくドメイン知識の補修アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.209921757303168
- License:
- Abstract: Perturbation experiments allow biologists to discover causal relationships between variables of interest, but the sparsity and high dimensionality of these data pose significant challenges for causal structure learning algorithms. Biological knowledge graphs can bootstrap the inference of causal structures in these situations, but since they compile vastly diverse information, they can bias predictions towards well-studied systems. Alternatively, amortized causal structure learning algorithms encode inductive biases through data simulation and train supervised models to recapitulate these synthetic graphs. However, realistically simulating biology is arguably even harder than understanding a specific system. In this work, we take inspiration from both strategies and propose an amortized algorithm for refining domain knowledge, based on data observations. On real and synthetic datasets, we show that our approach outperforms baselines in recovering ground truth causal graphs and identifying errors in the prior knowledge with limited interventional data.
- Abstract(参考訳): 摂動実験により、生物学者は興味のある変数間の因果関係を発見することができるが、これらのデータの空間性と高次元性は因果構造学習アルゴリズムに重大な課題をもたらす。
生物学的知識グラフは、これらの状況における因果構造の推定をブートストラップすることができるが、非常に多様な情報をコンパイルするので、よく研究されたシステムに対して予測をバイアスすることができる。
あるいは、償却因果構造学習アルゴリズムは、データシミュレーションと教師付きモデルを用いて帰納バイアスを符号化し、これらの合成グラフを再カプセル化する。
しかし、現実的にシミュレートする生物学は、特定のシステムを理解するよりも間違いなく難しい。
本研究では、両戦略からインスピレーションを得て、データ観測に基づくドメイン知識の精製のための補正アルゴリズムを提案する。
実データと合成データを用いて,本手法は,基礎となる真理因果グラフの復元や,先行知識における誤りの特定において,介入データに制限された精度で,基礎的特性よりも優れていることを示す。
関連論文リスト
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Deep Learning of Causal Structures in High Dimensions [0.6021787236982659]
本研究では,経験的データと先行因果的知識の組み合わせから,変数間の因果関係を学習するための深いニューラルネットワークを提案する。
我々は、因果リスクフレームワークに畳み込みニューラルネットワークとグラフニューラルネットワークを組み合わせて、柔軟でスケーラブルなアプローチを提供します。
論文 参考訳(メタデータ) (2022-12-09T14:12:47Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Implications of Topological Imbalance for Representation Learning on
Biomedical Knowledge Graphs [16.566710222582618]
知識グラフ埋め込みモデルが構造的不均衡によってどのように影響を受けるかを示す。
グラフトポロジを摂動させて、ランダムで生物学的に無意味な情報によって遺伝子ランクを人工的に変化させる方法を示す。
論文 参考訳(メタデータ) (2021-12-13T11:20:36Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
我々は,創薬の現実世界における課題に基づいて経験的研究を行う。
我々は,この課題を,化合物と疾患の両方が知識グラフの実体に対応するリンク予測問題として定式化する。
本稿では,強化学習と論理ルールに基づく政策誘導歩行を組み合わせた新しい手法PoLoを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:46:11Z) - Information fusion between knowledge and data in Bayesian network
structure learning [5.994412766684843]
本稿では,オープンソースのベイジィス構造学習システムで実装された情報融合手法について述べる。
結果は、限定データとビッグデータの両方で示され、ベイジスで利用可能なBN構造学習アルゴリズムが3つ適用されている。
論文 参考訳(メタデータ) (2021-01-31T15:45:29Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。