論文の概要: Adaptive loose optimization for robust question answering
- arxiv url: http://arxiv.org/abs/2305.03971v1
- Date: Sat, 6 May 2023 08:09:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 18:15:53.680333
- Title: Adaptive loose optimization for robust question answering
- Title(参考訳): ロバストな質問応答に対する適応的緩い最適化
- Authors: Jie Ma, Pinghui Wang, Zewei Wang, Dechen Kong, Min Hu, Ting Han, Jun
Liu
- Abstract要約: 適応的疎解最適化を用いた簡易かつ効果的な新規損失関数を提案する。
我々の主な技術的貢献は、前回の最適化状態と現在の最適化状態との比に応じて、損失を適応的に減少させることである。
提案手法は,ほとんどの場合,最先端のin-of-distriion性能とout-of-distriion性能が得られる。
- 参考スコア(独自算出の注目度): 20.372098060283022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question answering methods are well-known for leveraging data bias, such as
the language prior in visual question answering and the position bias in
machine reading comprehension (extractive question answering). Current
debiasing methods often come at the cost of significant in-distribution
performance to achieve favorable out-of-distribution generalizability, while
non-debiasing methods sacrifice a considerable amount of out-of-distribution
performance in order to obtain high in-distribution performance. Therefore, it
is challenging for them to deal with the complicated changing real-world
situations. In this paper, we propose a simple yet effective novel loss
function with adaptive loose optimization, which seeks to make the best of both
worlds for question answering. Our main technical contribution is to reduce the
loss adaptively according to the ratio between the previous and current
optimization state on mini-batch training data. This loose optimization can be
used to prevent non-debiasing methods from overlearning data bias while
enabling debiasing methods to maintain slight bias learning. Experiments on the
visual question answering datasets, including VQA v2, VQA-CP v1, VQA-CP v2,
GQA-OOD, and the extractive question answering dataset SQuAD demonstrate that
our approach enables QA methods to obtain state-of-the-art in- and
out-of-distribution performance in most cases. The source code has been
released publicly in \url{https://github.com/reml-group/ALO}.
- Abstract(参考訳): 質問応答手法は、視覚的質問応答の事前言語や機械読解(extractive question answering)における位置バイアスなど、データバイアスを活用することでよく知られている。
非分散法は高い分散性能を得るために相当量の分散性能を犠牲にするのに対し、現在のデバイアス法は適切な分散性能を達成するために重要な分散性能を犠牲にすることが多い。
そのため、複雑に変化する現実世界の状況に対処することは困難である。
本稿では,両世界の質問応答を最大限に活用することを目的とした適応的ゆがみ最適化を用いた,単純かつ効果的な新しい損失関数を提案する。
私たちの技術的貢献は、ミニバッチトレーニングデータにおける前回と現在の最適化状態の比率に応じて、損失を適応的に低減することにあります。
この緩やかな最適化は、非バイアス法がデータのバイアスを過度に学習するのを防ぐと同時に、デバイアス法がわずかにバイアス学習を維持するのを可能にするために使用できる。
VQA v2, VQA-CP v1, VQA-CP v2, GQA-OOD, および抽出された質問応答データセットSQADを含む視覚的質問応答データセットの実験により、我々の手法は、ほとんどのケースにおいて、最先端のin-of-distriion性能をQA手法で得ることができることを示した。
ソースコードは \url{https://github.com/reml-group/ALO} で公開されている。
関連論文リスト
- Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization [0.0]
本稿では,未知の状況の最適近似を導出する統合学習と最適化手法を提案する。
文献の在庫問題と実データを用いた自転車共有問題から得られた数値結果から,提案手法が有効であることを示す。
論文 参考訳(メタデータ) (2024-11-05T21:54:50Z) - Smart Sampling: Self-Attention and Bootstrapping for Improved Ensembled Q-Learning [0.6963971634605796]
アンサンブルQ学習のサンプル効率向上を目的とした新しい手法を提案する。
提案手法は,組立Qネットワークにマルチヘッド自己アテンションを組み込むとともに,組立Qネットワークが取り入れた状態-動作ペアをブートストラップする。
論文 参考訳(メタデータ) (2024-05-14T00:57:02Z) - Dataset Bias Mitigation in Multiple-Choice Visual Question Answering and
Beyond [93.96982273042296]
視覚言語(VL)理解タスクは、複数の質問を通じて複雑な視覚シーンのモデルによる理解を評価する。
我々は、モデルが様々なVLタスクを適切に理解することなく正しく解決するために、ショートカットとして活用できる2つのデータセットバイアスを特定した。
本稿では,ADS(Adversarial Data Synthesis)を用いて,合成学習データと偏り評価データを生成する。
次に、サンプル内微分に着目して、合成したトレーニングデータ、特に対物データを利用するモデルを支援するために、サンプル内対物訓練(ICT)を導入する。
論文 参考訳(メタデータ) (2023-10-23T08:09:42Z) - Kernel-Whitening: Overcome Dataset Bias with Isotropic Sentence
Embedding [51.48582649050054]
符号化文の特徴間の相関関係を解消する表現正規化手法を提案する。
またNystromカーネル近似法であるKernel-Whiteningを提案する。
実験により,Kernel-Whiteningは分布内精度を維持しつつ,分布外データセット上でのBERTの性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2022-10-14T05:56:38Z) - Introspective Distillation for Robust Question Answering [70.18644911309468]
質問応答(QA)モデルは、例えば、視覚的QAに先行する言語や、読解における位置バイアスなど、データのバイアスを利用するためによく知られている。
近年の脱バイアス法は, 分配内(ID)性能のかなりの犠牲を伴い, 分配外(OOD)の一般化性を良好に達成している。
IntroD(Introspective Distillation)と呼ばれる新しい脱湿法を提案し,両者のQAを最大限に活用する。
論文 参考訳(メタデータ) (2021-11-01T15:30:15Z) - Greedy Gradient Ensemble for Robust Visual Question Answering [163.65789778416172]
VQA(Visual Question Answering)では、分布バイアスとショートカットバイアスという2つの側面から生じる言語バイアスを強調している。
本稿では,非バイアスベースモデル学習に複数のバイアスモデルを組み合わせた新しいデバイアスフレームワークGreedy Gradient Ensemble(GGE)を提案する。
GGEはバイアス付きモデルを優先的にバイアス付きデータ分布に過度に適合させ、バイアス付きモデルでは解決が難しい例にベースモデルがより注意を払う。
論文 参考訳(メタデータ) (2021-07-27T08:02:49Z) - Optimal Resource Allocation for Serverless Queries [8.59568779761598]
以前の作業では、リソース割り当てと実行時の積極的なトレードオフを無視しながら、ピークアロケーションの予測に重点を置いていた。
本稿では,新しいクエリと過去のクエリの両方に対して,アグレッシブなトレードオフでパフォーマンスを予測できる最適なリソース割り当てシステムを提案する。
論文 参考訳(メタデータ) (2021-07-19T02:55:48Z) - Contrast and Classify: Training Robust VQA Models [60.80627814762071]
本稿では,クロスエントロピーとコントラスト損失の両方を最適化する新しいトレーニングパラダイム(ConClaT)を提案する。
双方の損失を -- 交互に,あるいは共同で -- 最適化することが,効果的なトレーニングの鍵であることに気付きました。
論文 参考訳(メタデータ) (2020-10-13T00:23:59Z) - Unshuffling Data for Improved Generalization [65.57124325257409]
トレーニングディストリビューションを越えた一般化は、マシンラーニングにおける中核的な課題である。
本研究では,複数の学習環境として扱われる非d.d.サブセットにデータを分割することで,アウト・オブ・ディストリビューションの一般化を向上したモデル学習を導出できることを示す。
論文 参考訳(メタデータ) (2020-02-27T03:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。