Efficient and Degree-Guided Graph Generation via Discrete Diffusion
Modeling
- URL: http://arxiv.org/abs/2305.04111v4
- Date: Wed, 31 May 2023 17:50:17 GMT
- Title: Efficient and Degree-Guided Graph Generation via Discrete Diffusion
Modeling
- Authors: Xiaohui Chen, Jiaxing He, Xu Han, Li-Ping Liu
- Abstract summary: Diffusion-based generative graph models have been proven effective in generating high-quality small graphs.
However, they need to be more scalable for generating large graphs containing thousands of nodes desiring graph statistics.
We propose EDGE, a new diffusion-based generative graph model that addresses generative tasks with large graphs.
- Score: 20.618785908770356
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion-based generative graph models have been proven effective in
generating high-quality small graphs. However, they need to be more scalable
for generating large graphs containing thousands of nodes desiring graph
statistics. In this work, we propose EDGE, a new diffusion-based generative
graph model that addresses generative tasks with large graphs. To improve
computation efficiency, we encourage graph sparsity by using a discrete
diffusion process that randomly removes edges at each time step and finally
obtains an empty graph. EDGE only focuses on a portion of nodes in the graph at
each denoising step. It makes much fewer edge predictions than previous
diffusion-based models. Moreover, EDGE admits explicitly modeling the node
degrees of the graphs, further improving the model performance. The empirical
study shows that EDGE is much more efficient than competing methods and can
generate large graphs with thousands of nodes. It also outperforms baseline
models in generation quality: graphs generated by our approach have more
similar graph statistics to those of the training graphs.
Related papers
- Random Walk Diffusion for Efficient Large-Scale Graph Generation [0.43108040967674194]
We propose ARROW-Diff (AutoRegressive RandOm Walk Diffusion), a novel random walk-based diffusion approach for efficient large-scale graph generation.
We demonstrate that ARROW-Diff can scale to large graphs efficiently, surpassing other baseline methods in terms of both generation time and multiple graph statistics.
arXiv Detail & Related papers (2024-08-08T13:42:18Z) - Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
We introduce the Neural Graph Generator (NGG), a novel approach which utilizes conditioned latent diffusion models for graph generation.
NGG demonstrates a remarkable capacity to model complex graph patterns, offering control over the graph generation process.
arXiv Detail & Related papers (2024-03-03T15:28:47Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
We propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions.
Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.
arXiv Detail & Related papers (2024-03-02T02:28:20Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
A graph generative model defines a distribution over graphs.
We derive the exact joint probability over the graph and the node ordering of the sequential process.
We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods.
arXiv Detail & Related papers (2021-06-11T06:37:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Graph Coarsening with Neural Networks [8.407217618651536]
We propose a framework for measuring the quality of coarsening algorithm and show that depending on the goal, we need to carefully choose the Laplace operator on the coarse graph.
Motivated by the observation that the current choice of edge weight for the coarse graph may be sub-optimal, we parametrize the weight assignment map with graph neural networks and train it to improve the coarsening quality in an unsupervised way.
arXiv Detail & Related papers (2021-02-02T06:50:07Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.