Random Walk Diffusion for Efficient Large-Scale Graph Generation
- URL: http://arxiv.org/abs/2408.04461v1
- Date: Thu, 8 Aug 2024 13:42:18 GMT
- Title: Random Walk Diffusion for Efficient Large-Scale Graph Generation
- Authors: Tobias Bernecker, Ghalia Rehawi, Francesco Paolo Casale, Janine Knauer-Arloth, Annalisa Marsico,
- Abstract summary: We propose ARROW-Diff (AutoRegressive RandOm Walk Diffusion), a novel random walk-based diffusion approach for efficient large-scale graph generation.
We demonstrate that ARROW-Diff can scale to large graphs efficiently, surpassing other baseline methods in terms of both generation time and multiple graph statistics.
- Score: 0.43108040967674194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph generation addresses the problem of generating new graphs that have a data distribution similar to real-world graphs. While previous diffusion-based graph generation methods have shown promising results, they often struggle to scale to large graphs. In this work, we propose ARROW-Diff (AutoRegressive RandOm Walk Diffusion), a novel random walk-based diffusion approach for efficient large-scale graph generation. Our method encompasses two components in an iterative process of random walk sampling and graph pruning. We demonstrate that ARROW-Diff can scale to large graphs efficiently, surpassing other baseline methods in terms of both generation time and multiple graph statistics, reflecting the high quality of the generated graphs.
Related papers
- InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
We propose a graph context-conditioned diffusion model called InstructG2I.
InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling.
A Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process.
arXiv Detail & Related papers (2024-10-09T17:56:15Z) - Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
We introduce the Neural Graph Generator (NGG), a novel approach which utilizes conditioned latent diffusion models for graph generation.
NGG demonstrates a remarkable capacity to model complex graph patterns, offering control over the graph generation process.
arXiv Detail & Related papers (2024-03-03T15:28:47Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
We propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions.
Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.
arXiv Detail & Related papers (2024-03-02T02:28:20Z) - Efficient and Degree-Guided Graph Generation via Discrete Diffusion
Modeling [20.618785908770356]
Diffusion-based generative graph models have been proven effective in generating high-quality small graphs.
However, they need to be more scalable for generating large graphs containing thousands of nodes desiring graph statistics.
We propose EDGE, a new diffusion-based generative graph model that addresses generative tasks with large graphs.
arXiv Detail & Related papers (2023-05-06T18:32:27Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph
Generation [43.196067037856515]
Graph generative models have broad applications in biology, chemistry and social science.
Current leading autoregressive models fail to capture the permutation invariance nature of graphs.
We propose a continuous-time generative diffusion process for permutation invariant graph generation.
arXiv Detail & Related papers (2022-12-04T15:12:44Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
A graph generative model defines a distribution over graphs.
We derive the exact joint probability over the graph and the node ordering of the sequential process.
We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods.
arXiv Detail & Related papers (2021-06-11T06:37:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.