Superoscillating Quantum Control Induced By Sequential Selections
- URL: http://arxiv.org/abs/2305.04303v1
- Date: Sun, 7 May 2023 15:07:28 GMT
- Title: Superoscillating Quantum Control Induced By Sequential Selections
- Authors: Yongcheng Ding, Yiming Pan, Xi Chen
- Abstract summary: Superoscillation is a counterintuitive phenomenon for its mathematical feature of "faster-than-Fourier"
We provide a superoscillating quantum control protocol realized by sequential selections in the framework of weak measurement.
Our findings provide avenues for quantum state control and wave-packet manipulation using superoscillation in quantum platforms such as trapped ions.
- Score: 4.336065967298193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superoscillation is a counterintuitive phenomenon for its mathematical
feature of "faster-than-Fourier", which has allowed novel optical imaging
beyond the diffraction limit. Here, we provide a superoscillating quantum
control protocol realized by sequential selections in the framework of weak
measurement, which drives the apparatus (target) by repeatedly applying optimal
pre- and post-selections to the system (controller). Our protocol accelerates
the adiabatic transport of trapped ions and adiabatic quantum search algorithm
at a finite energy cost. We demonstrate the accuracy and robustness of the
protocol in the presence of decoherence and fluctuating noise and elucidate the
trade-off between fidelity and rounds of selections. Our findings provide
avenues for quantum state control and wave-packet manipulation using
superoscillation in quantum platforms such as trapped ions.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Efficient High-Fidelity Flying Qubit Shaping [0.0]
We formulate a theory for stimulated Raman emission which is applicable to a wide range of physical systems.
We find the upper bound for the photonic pulse emission efficiency of arbitrary matter qubit states for imperfect emitters.
Protocols for the production of time-bin encoding and spin-photon entanglement are proposed.
arXiv Detail & Related papers (2022-12-21T17:19:39Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum Optimal Control without Arbitrary Waveform Generators [1.572727650614088]
We show that arbitrary control of a quantum system can be achieved by simply turning on and off the control fields in a proper sequence.
We demonstrate the flexibility and robustness of the resulting control protocol, and apply it to superconducting quantum circuits.
arXiv Detail & Related papers (2022-09-20T17:27:27Z) - Fast Ion Gates Outside the Lamb-Dicke Regime by Robust Quantum Optimal
Control [16.769083043152627]
We present a quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.
The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates.
Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation.
arXiv Detail & Related papers (2022-09-20T11:14:00Z) - Steering-enhanced quantum metrology using superpositions of quantum
channels [0.0]
We consider a control system that manipulates the target to pass through superpositions of either dephased or depolarized phase shifts.
We implement proof-of-principle experiments for a superposition of the dephased phase shifts on a IBM Quantum computer.
arXiv Detail & Related papers (2022-06-08T09:15:06Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Experimental implementation of precisely tailored light-matter
interaction via inverse engineering [5.131683740032632]
shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays become versatile toolboxes.
Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system.
We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited state decay and inhomogeneous broadening.
arXiv Detail & Related papers (2021-01-29T08:17:01Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.