Quantum Optimal Control without Arbitrary Waveform Generators
- URL: http://arxiv.org/abs/2209.09869v1
- Date: Tue, 20 Sep 2022 17:27:27 GMT
- Title: Quantum Optimal Control without Arbitrary Waveform Generators
- Authors: Qi-Ming Chen and Herschel Rabitz and Re-Bing Wu
- Abstract summary: We show that arbitrary control of a quantum system can be achieved by simply turning on and off the control fields in a proper sequence.
We demonstrate the flexibility and robustness of the resulting control protocol, and apply it to superconducting quantum circuits.
- Score: 1.572727650614088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simple, precise, and robust control is demanded for operating a large quantum
information processor. However, existing routes to high-fidelity quantum
control rely heavily on arbitrary waveform generators that are difficult to
scale up. Here, we show that arbitrary control of a quantum system can be
achieved by simply turning on and off the control fields in a proper sequence.
The switching instances can be designed by conventional quantum optimal control
algorithms, while the required computational resources for matrix exponential
can be substantially reduced. We demonstrate the flexibility and robustness of
the resulting control protocol, and apply it to superconducting quantum
circuits for illustration. We expect this proposal to be readily achievable
with current semiconductor and superconductor technologies, which offers a
significant step towards scalable quantum computing.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
We propose a promising average-fidelity-based machine-learning-inspired method to optimize the control parameters.
We implement a single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering.
We demonstrate that the neural network possesses the ability to expand the model space.
arXiv Detail & Related papers (2023-09-28T14:36:26Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Information flow and error scaling for fully-quantum control [4.724825031148412]
We show that the quantum channel capacity sets the scaling behaviour of the optimal control error.
We prove that the minimum control error is ensured by maximizing the quantum capacity of the channel.
arXiv Detail & Related papers (2020-12-11T10:46:25Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
We propose a simplified implementation of universal holonomic quantum gates on superconducting circuits.
Our scheme is more robust than the conventional ones, and thus provides a promising alternative strategy for scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-04-23T13:26:18Z) - Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits [7.703593898562321]
We propose a nonadiabatic geometric quantum computation scheme on superconducting circuits.
Our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-04-21T08:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.