EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel
Transformers
- URL: http://arxiv.org/abs/2209.11172v1
- Date: Sun, 18 Sep 2022 03:03:47 GMT
- Title: EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel
Transformers
- Authors: Ricardo V. Godoy, Tharik J. S. Reis, Paulo H. Polegato, Gustavo J. G.
Lahr, Ricardo L. Saute, Frederico N. Nakano, Helio R. Machado, Americo C.
Sakamoto, Marcelo Becker, Glauco A. P. Caurin
- Abstract summary: Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures.
EEG is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy.
Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy.
- Score: 1.0970480513577103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Epilepsy is one of the most common neurological diseases, characterized by
transient and unprovoked events called epileptic seizures. Electroencephalogram
(EEG) is an auxiliary method used to perform both the diagnosis and the
monitoring of epilepsy. Given the unexpected nature of an epileptic seizure,
its prediction would improve patient care, optimizing the quality of life and
the treatment of epilepsy. Predicting an epileptic seizure implies the
identification of two distinct states of EEG in a patient with epilepsy: the
preictal and the interictal. In this paper, we developed two deep learning
models called Temporal Multi-Channel Transformer (TMC-T) and Vision Transformer
(TMC-ViT), adaptations of Transformer-based architectures for multi-channel
temporal signals. Moreover, we accessed the impact of choosing different
preictal duration, since its length is not a consensus among experts, and also
evaluated how the sample size benefits each model. Our models are compared with
fully connected, convolutional, and recurrent networks. The algorithms were
patient-specific trained and evaluated on raw EEG signals from the CHB-MIT
database. Experimental results and statistical validation demonstrated that our
TMC-ViT model surpassed the CNN architecture, state-of-the-art in seizure
prediction.
Related papers
- From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
One-third of people suffering from mesial temporal lobe epilepsy exhibit drug resistance.
Key part in anti-seizure medication development is the capability of detecting and quantifying epileptic seizures.
In this study, we introduced a seizure detection pipeline based on deep learning models applied to raw EEG signals.
arXiv Detail & Related papers (2024-10-04T12:52:37Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Lightweight Convolution Transformer for Cross-patient Seizure Detection
in Multi-channel EEG Signals [0.0]
This study proposes a novel deep learning architecture based lightweight convolution transformer (LCT)
The transformer is able to learn spatial and temporal correlated information simultaneously from the multi-channel electroencephalogram (EEG) signal to detect seizures at smaller segment lengths.
arXiv Detail & Related papers (2023-05-07T16:43:52Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
Seizure type identification is essential for the treatment and management of epileptic patients.
We present a novel multi-path seizure-type classification deep learning network (MP-SeizNet)
MP-SeizNet consists of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism.
arXiv Detail & Related papers (2022-11-09T01:07:20Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Patient-Specific Seizure Prediction Using Single Seizure
Electroencephalography Recording [16.395309518579914]
We propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG.
Our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.
arXiv Detail & Related papers (2020-11-14T03:45:17Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.