A bulk manifestation of Krylov complexity
- URL: http://arxiv.org/abs/2305.04355v2
- Date: Fri, 8 Sep 2023 11:42:53 GMT
- Title: A bulk manifestation of Krylov complexity
- Authors: E. Rabinovici, A. S\'anchez-Garrido, R. Shir and J. Sonner
- Abstract summary: We establish an entry in the AdS/CFT dictionary for one such class of complexity, namely Krylov or K-complexity.
We show that Krylov complexity of the infinite-temperature Hilbert thermofield double state on the boundary of AdS$$ has a precise bulk description in JT gravity.
Our result makes extensive use of chord diagram techniques and identifies the Krylov basis of the boundary quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are various definitions of the concept of complexity in Quantum Field
Theory as well as for finite quantum systems. For several of them there are
conjectured holographic bulk duals. In this work we establish an entry in the
AdS/CFT dictionary for one such class of complexity, namely Krylov or
K-complexity. For this purpose we work in the double-scaled SYK model which is
dual in a certain limit to JT gravity, a theory of gravity in AdS$_2$. In
particular, states on the boundary have a clear geometrical definition in the
bulk. We use this result to show that Krylov complexity of the
infinite-temperature thermofield double state on the boundary of AdS$_2$ has a
precise bulk description in JT gravity, namely the length of the two-sided
wormhole. We do this by showing that the Krylov basis elements, which are
eigenstates of the Krylov complexity operator, are mapped to length eigenstates
in the bulk theory by subjecting K-complexity to the bulk-boundary map
identifying the bulk/boundary Hilbert spaces. Our result makes extensive use of
chord diagram techniques and identifies the Krylov basis of the boundary
quantum system with fixed chord number states building the bulk gravitational
Hilbert space.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Krylov complexity as an order parameter for deconfinement phase
transitions at large $N$ [0.0]
Krylov complexity is an order parameter of confinement/deconfinement transitions in large $N$ quantum field theories.
We show that Krylov complexity reflects the confinement/deconfinement phase transitions through the continuity of mass spectrum.
arXiv Detail & Related papers (2024-01-09T07:04:17Z) - Krylov Spread Complexity of Quantum-Walks [0.0]
The paper sheds new light on the Krylov complexity measure by exploring it in the context of continuous-time quantum-walks on graphs.
A close relationship between Krylov spread complexity and the concept of limiting-distributions for quantum-walks is established.
Using a graph optimization algorithm, quantum-walk graphs are constructed that have minimal and maximal long-time average Krylov $bar C$-complexity.
arXiv Detail & Related papers (2023-12-31T16:06:35Z) - Krylov Complexity of Fermionic and Bosonic Gaussian States [9.194828630186072]
This paper focuses on emphKrylov complexity, a specialized form of quantum complexity.
It offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible bases.
arXiv Detail & Related papers (2023-09-19T07:32:04Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Krylov Complexity in Quantum Field Theory [0.9998361283909821]
We study the Krylov complexity in quantum field theory and make a connection with the holographic "Complexity equals Volume" conjecture.
When Krylov basis matches with Fock basis, for several interesting settings, we observe that the Krylov complexity equals the average particle number showing that complexity scales with volume.
arXiv Detail & Related papers (2022-04-05T14:42:10Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Circuit Complexity in Topological Quantum Field Theory [0.0]
Quantum circuit complexity has played a central role in advances in holography and many-body physics.
In a departure from standard treatments, we aim to quantify the complexity of the Euclidean path integral.
We argue that the pants decomposition provides a natural notion of circuit complexity within the category of 2-dimensional bordisms.
We use it to formulate the circuit complexity of states and operators in 2-dimensional topological quantum field theory.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.