Krylov spread complexity as holographic complexity beyond JT gravity
- URL: http://arxiv.org/abs/2412.17785v1
- Date: Mon, 23 Dec 2024 18:43:35 GMT
- Title: Krylov spread complexity as holographic complexity beyond JT gravity
- Authors: Michal P. Heller, Jacopo Papalini, Tim Schuhmann,
- Abstract summary: One of the important open problems in quantum black hole physics is a dual interpretation of holographic complexity proposals.
Our work utilizes the recent connection between double-scaled SYK and sine-dilaton gravity to show that the quantitative relation between Krylov spread complexity and complexity = volume extends to finite temperatures and to full quantum regime on the gravity side at disk level.
- Score: 0.0
- License:
- Abstract: One of the important open problems in quantum black hole physics is a dual interpretation of holographic complexity proposals. To date the only quantitative match is the equality between the Krylov spread complexity in triple-scaled SYK at infinite temperature and the complexity = volume proposal in classical JT gravity. Our work utilizes the recent connection between double-scaled SYK and sine-dilaton gravity to show that the quantitative relation between Krylov spread complexity and complexity = volume extends to finite temperatures and to full quantum regime on the gravity side at disk level. From the latter we isolate the first quantum correction to the complexity = volume proposal and propose to view it as a complexity of quantum fields in the bulk. Finally, we comment on the switchback effect, whose presence would make the Krylov spread complexity a fully fledged holographic complexity at least in sine-dilaton gravity.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Krylov Spread Complexity of Quantum-Walks [0.0]
The paper sheds new light on the Krylov complexity measure by exploring it in the context of continuous-time quantum-walks on graphs.
A close relationship between Krylov spread complexity and the concept of limiting-distributions for quantum-walks is established.
Using a graph optimization algorithm, quantum-walk graphs are constructed that have minimal and maximal long-time average Krylov $bar C$-complexity.
arXiv Detail & Related papers (2023-12-31T16:06:35Z) - Spread complexity in saddle-dominated scrambling [0.0]
We study the spread complexity of the thermofield double state within emphintegrable systems that exhibit saddle-dominated scrambling.
Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of emphchaotic systems.
arXiv Detail & Related papers (2023-12-19T20:41:14Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Krylov Complexity of Fermionic and Bosonic Gaussian States [9.194828630186072]
This paper focuses on emphKrylov complexity, a specialized form of quantum complexity.
It offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible bases.
arXiv Detail & Related papers (2023-09-19T07:32:04Z) - A bulk manifestation of Krylov complexity [0.0]
We establish an entry in the AdS/CFT dictionary for one such class of complexity, namely Krylov or K-complexity.
We show that Krylov complexity of the infinite-temperature Hilbert thermofield double state on the boundary of AdS$$ has a precise bulk description in JT gravity.
Our result makes extensive use of chord diagram techniques and identifies the Krylov basis of the boundary quantum system.
arXiv Detail & Related papers (2023-05-07T18:58:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Aspects of The First Law of Complexity [0.0]
We investigate the first law of complexity proposed in arXiv:1903.04511, i.e., the variation of complexity when the target state is perturbed.
Based on Nielsen's geometric approach to quantum circuit complexity, we find the variation only depends on the end of the optimal circuit.
arXiv Detail & Related papers (2020-02-13T21:15:57Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.