Information capacity analysis of fully correlated multi-level amplitude
damping channels
- URL: http://arxiv.org/abs/2305.04481v2
- Date: Mon, 15 Jan 2024 18:07:10 GMT
- Title: Information capacity analysis of fully correlated multi-level amplitude
damping channels
- Authors: Rajiuddin Sk and Prasanta K. Panigrahi
- Abstract summary: We investigate some of the information capacities of the simplest member of multi-level Amplitude Damping Channel, a qutrit channel.
We find the upper bounds of the single-shot classical capacities and calculate the quantum capacities associated with a specific class of maps.
- Score: 0.9790236766474201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The primary objective of quantum Shannon theory is to evaluate the capacity
of quantum channels. In spite of the existence of rigorous coding theorems that
quantify the transmission of information through quantum channels,
superadditivity effects limit our understanding of the channel capacities. In
this paper, we mainly focus on a family of channels known as multi-level
amplitude damping channels. We investigate some of the information capacities
of the simplest member of multi-level Amplitude Damping Channel, a qutrit
channel, in the presence of correlations between successive applications of the
channel. We find the upper bounds of the single-shot classical capacities and
calculate the quantum capacities associated with a specific class of maps after
investigating the degradability property of the channels. Additionally, the
quantum and classical capacities of the channels have been computed in
entanglement-assisted scenarios.
Related papers
- Unextendible entanglement of quantum channels [4.079147243688764]
We study the ability of quantum channels to perform quantum communication tasks.
A quantum channel can distill a highly entangled state between two parties.
We generalize the formalism of $k$-extendibility to bipartite superchannels.
arXiv Detail & Related papers (2024-07-22T18:00:17Z) - Weyl channels for multipartite systems [42.37986459997699]
Quantum channels describe unitary and non-unitary evolution of quantum systems.
We show that these channels are completely characterized by elements drawn of finite cyclic groups.
arXiv Detail & Related papers (2023-10-17T02:45:47Z) - On Simultaneous Information and Energy Transmission through Quantum Channels [15.387256204743407]
We introduce the quantum-classical analogue of the capacity-power function.
We generalize results in classical information theory for transmitting classical information through noisy channels.
arXiv Detail & Related papers (2023-09-24T16:46:47Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Exact solution for the quantum and private capacities of bosonic
dephasing channels [10.787390511207686]
We provide the first exact calculation of the quantum, private, two-way assisted quantum, and secret-key capacities of bosonic dephasing channels.
arXiv Detail & Related papers (2022-05-11T19:12:12Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
We define various notions of commitment capacity for classical-quantum channels.
We prove matching upper and lower bound on it in terms of the conditional entropy.
arXiv Detail & Related papers (2022-01-17T10:41:50Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Detecting positive quantum capacities of quantum channels [9.054540533394926]
A noisy quantum channel can be used to reliably transmit quantum information at a non-zero rate.
This is because it requires computation of the channel's coherent information for an unbounded number of copies of the channel.
We show that a channel's ability to transmit information is intimately connected to the relative sizes of its input, output, and environment spaces.
arXiv Detail & Related papers (2021-05-13T14:26:45Z) - Coherent control and distinguishability of quantum channels via
PBS-diagrams [59.94347858883343]
We introduce a graphical language for coherent control of general quantum channels inspired by practical quantum optical setups involving polarising beam splitters (PBS)
We characterise the observational equivalence of purified channels in various coherent-control contexts, paving the way towards a faithful representation of quantum channels under coherent control.
arXiv Detail & Related papers (2021-03-02T22:56:25Z) - Quantum capacity analysis of multi-level amplitude damping channels [4.2231191686871234]
The set of Multi-level Amplitude Damping (MAD) quantum channels is introduced as a generalization of the standard qubit Amplitude Damping Channel to quantum systems of finite dimension $d$.
We compute the associated quantum and private classical capacities for a rather wide class of maps, extending the set of solvable models known so far.
arXiv Detail & Related papers (2020-08-02T13:15:00Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.