On Simultaneous Information and Energy Transmission through Quantum Channels
- URL: http://arxiv.org/abs/2309.13691v6
- Date: Tue, 30 Jul 2024 05:04:48 GMT
- Title: On Simultaneous Information and Energy Transmission through Quantum Channels
- Authors: Bishal Kumar Das, Lav R. Varshney, Vaibhav Madhok,
- Abstract summary: We introduce the quantum-classical analogue of the capacity-power function.
We generalize results in classical information theory for transmitting classical information through noisy channels.
- Score: 15.387256204743407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optimal rate at which information can be sent through a quantum channel when the transmitted signal must simultaneously carry some minimum amount of energy is characterized. To do so, we introduce the quantum-classical analogue of the capacity-power function and generalize results in classical information theory for transmitting classical information through noisy channels. We show that the capacity-power function for a classical-quantum channel, for both unassisted and private protocol, is concave and also prove additivity for unentangled and uncorrelated ensembles of input signals for such channels. This implies we do not need regularized formulas for calculation. We show these properties also hold for all noiseless channels when we restrict the set of input states to be pure quantum states. For general channels, we find that the capacity-power function is piece-wise concave. We give an elegant visual proof for this supported by numerical simulations. We connect channel capacity and properties of random quantum states. In particular, we obtain analytical expressions for the capacity-power function for the case of noiseless channels using properties of random quantum states under an energy constraint and concentration phenomena in large Hilbert spaces.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Information capacity analysis of fully correlated multi-level amplitude
damping channels [0.9790236766474201]
We investigate some of the information capacities of the simplest member of multi-level Amplitude Damping Channel, a qutrit channel.
We find the upper bounds of the single-shot classical capacities and calculate the quantum capacities associated with a specific class of maps.
arXiv Detail & Related papers (2023-05-08T06:10:56Z) - Correlation measures of a quantum state and information characteristics
of a quantum channel [0.0]
We discuss the interconnections between basic correlation measures of a bipartite quantum state and basic information characteristics of a quantum channel.
We describe properties of the (unoptimized and optimized) quantum discord in infinite bipartite systems.
arXiv Detail & Related papers (2023-04-11T17:58:13Z) - Exact solution for the quantum and private capacities of bosonic
dephasing channels [10.787390511207686]
We provide the first exact calculation of the quantum, private, two-way assisted quantum, and secret-key capacities of bosonic dephasing channels.
arXiv Detail & Related papers (2022-05-11T19:12:12Z) - Reliable Simulation of Quantum Channels: the Error Exponent [5.8303977553652]
We study the error exponent of quantum channel simulation, which characterizes the optimal speed of exponential convergence.
We obtain an achievability bound for quantum channel simulation in the finite-blocklength setting.
arXiv Detail & Related papers (2021-12-08T18:55:54Z) - Detecting positive quantum capacities of quantum channels [9.054540533394926]
A noisy quantum channel can be used to reliably transmit quantum information at a non-zero rate.
This is because it requires computation of the channel's coherent information for an unbounded number of copies of the channel.
We show that a channel's ability to transmit information is intimately connected to the relative sizes of its input, output, and environment spaces.
arXiv Detail & Related papers (2021-05-13T14:26:45Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Coherent control and distinguishability of quantum channels via
PBS-diagrams [59.94347858883343]
We introduce a graphical language for coherent control of general quantum channels inspired by practical quantum optical setups involving polarising beam splitters (PBS)
We characterise the observational equivalence of purified channels in various coherent-control contexts, paving the way towards a faithful representation of quantum channels under coherent control.
arXiv Detail & Related papers (2021-03-02T22:56:25Z) - Quantum Channel State Masking [78.7611537027573]
Communication over a quantum channel that depends on a quantum state is considered when the encoder has channel side information (CSI) and is required to mask information on the quantum channel state from the decoder.
A full characterization is established for the entanglement-assisted masking equivocation region, and a regularized formula is given for the quantum capacity-leakage function without assistance.
arXiv Detail & Related papers (2020-06-10T16:18:03Z) - Permutation Enhances Classical Communication Assisted by Entangled
States [67.12391801199688]
We show that the capacity satisfies the strong converse property and thus the formula serves as a sharp dividing line between achievable and unachievable rates of communication.
As examples, we derive analytically the classical capacity of various quantum channels of interests.
arXiv Detail & Related papers (2020-01-07T01:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.