Operational Markovianization in Randomized Benchmarking
- URL: http://arxiv.org/abs/2305.04704v2
- Date: Tue, 30 Apr 2024 12:31:20 GMT
- Title: Operational Markovianization in Randomized Benchmarking
- Authors: Pedro Figueroa-Romero, Miha Papič, Adrian Auer, Min-Hsiu Hsieh, Kavan Modi, Inés de Vega,
- Abstract summary: We analytically show that error suppression techniques such as Dynamical Decoupling (DD) and Randomized Compiling (RC) can operationally Markovianize Randomized Benchmarking (RB)
Our results show that simple and efficient error suppression methods can simultaneously tame non-Markovian noise and allow for standard and reliable gate quality estimation.
- Score: 7.680510419135912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A crucial task to obtain optimal and reliable quantum devices is to quantify their overall performance. The average fidelity of quantum gates is a particular figure of merit that can be estimated efficiently by Randomized Benchmarking (RB). However, the concept of gate-fidelity itself relies on the crucial assumption that noise behaves in a predictable, time-local, or so-called Markovian manner, whose breakdown can naturally become the leading source of errors as quantum devices scale in size and depth. We analytically show that error suppression techniques such as Dynamical Decoupling (DD) and Randomized Compiling (RC) can operationally Markovianize RB: i) fast DD reduces non-Markovian RB to an exponential decay plus longer-time corrections, while on the other hand, ii) RC generally does not affect the average, but iii) it always suppresses the variance of such RB outputs. We demonstrate these effects numerically with a qubit noise model. Our results show that simple and efficient error suppression methods can simultaneously tame non-Markovian noise and allow for standard and reliable gate quality estimation, a fundamentally important task in the path toward fully functional quantum devices.
Related papers
- Dynamical quantum maps for single-qubit gates under universal non-Markovian noise [0.0]
Noise in quantum devices is ubiquitous and generally deleterious in settings where precision is required.
Here we derive a compact microscopic error model for single-qubit gates that only requires a single experimental input.
We find that experimental estimates of average gate errors measured through randomized benchmarking and reconstructed via quantum process tomography are tightly lower-bounded by our analytical estimates.
arXiv Detail & Related papers (2024-02-22T13:24:03Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Adaptive mitigation of time-varying quantum noise [0.1227734309612871]
Current quantum computers suffer from non-stationary noise channels with high error rates.
We propose a Bayesian inference-based adaptive algorithm that can learn and mitigate quantum noise in response to changing channel conditions.
arXiv Detail & Related papers (2023-08-16T01:33:07Z) - Benchmarking quantum logic operations relative to thresholds for fault
tolerance [0.02171671840172762]
We use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor.
We show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set.
arXiv Detail & Related papers (2022-07-18T17:41:58Z) - Machine Learning of Average Non-Markovianity from Randomized
Benchmarking [12.547444644243544]
The presence of correlations in noisy quantum circuits will be an inevitable side effect as quantum devices continue to grow in size and depth.
RB is arguably the simplest method to initially assess the overall performance of a quantum device.
Here, we demonstrate a method exploiting the power of machine learning with matrix product operators to deduce the minimal average non-Markovianity displayed by the data of a RB experiment.
arXiv Detail & Related papers (2022-07-04T16:07:21Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Error mitigation in quantum metrology via zero noise extrapolation [1.044291921757248]
We consider Zero Noise Extrapolation (ZNE) as an error mitigation strategy in quantum metrology.
ZNE can be an effective, resource efficient error mitigation alternative when strategies employing full quantum error correcting codes are unavailable.
arXiv Detail & Related papers (2021-01-11T08:52:27Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.