論文の概要: Reinforcement Learning for Topic Models
- arxiv url: http://arxiv.org/abs/2305.04843v1
- Date: Mon, 8 May 2023 16:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 13:42:55.521343
- Title: Reinforcement Learning for Topic Models
- Title(参考訳): トピックモデルのための強化学習
- Authors: Jeremy Costello and Marek Z. Reformat
- Abstract要約: 本稿では,ProdLDAにおける変分オートエンコーダを連続行動空間強化学習ポリシーに置き換えることにより,トピックモデリングに強化学習手法を適用した。
ニューラルネットワークアーキテクチャの近代化、ELBO損失の重み付け、コンテキスト埋め込みの使用、トピックの多様性と一貫性の計算による学習プロセスの監視など、いくつかの変更を導入している。
- 参考スコア(独自算出の注目度): 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply reinforcement learning techniques to topic modeling by replacing the
variational autoencoder in ProdLDA with a continuous action space reinforcement
learning policy. We train the system with a policy gradient algorithm
REINFORCE. Additionally, we introduced several modifications: modernize the
neural network architecture, weight the ELBO loss, use contextual embeddings,
and monitor the learning process via computing topic diversity and coherence
for each training step. Experiments are performed on 11 data sets. Our
unsupervised model outperforms all other unsupervised models and performs on
par with or better than most models using supervised labeling. Our model is
outperformed on certain data sets by a model using supervised labeling and
contrastive learning. We have also conducted an ablation study to provide
empirical evidence of performance improvements from changes we made to ProdLDA
and found that the reinforcement learning formulation boosts performance.
- Abstract(参考訳): 我々は,prodldaの変分オートエンコーダを連続的行動空間強化学習方針に置き換え,トピックモデリングに強化学習手法を適用する。
我々は,ポリシー勾配アルゴリズムを補強してシステムを訓練する。
さらに、ニューラルネットワークアーキテクチャの近代化、elbo損失の重み付け、コンテキスト埋め込みの使用、各トレーニングステップのトピックの多様性と一貫性の計算による学習プロセス監視など、いくつかの変更を導入しました。
実験は11のデータセットで行われる。
我々の教師なしモデルは、他の教師なしモデルよりも優れており、教師なしラベリングを用いたほとんどのモデルと同等以上の性能を発揮する。
我々のモデルは教師付きラベリングとコントラスト学習を用いたモデルによって、あるデータセット上で優れています。
また,prodldaに対する変更による性能改善の実証的証拠を提供するため,アブレーション研究を行い,強化学習用製剤が性能向上をもたらすことを見出した。
関連論文リスト
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
RLエージェントの訓練と並行して動作モデルを学ぶことで,実システムからサンプリングしたデータ量を大幅に削減できることを示す。
また、RLトレーニングのバイアスを避けるために、モデルを反復的に更新することが重要であることも示している。
論文 参考訳(メタデータ) (2023-02-14T16:14:39Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
時間パネルデータセットの予測をランキングするモジュール型機械学習パイプラインを提案する。
パイプラインのモジュラリティにより、GBDT(Gradient Boosting Decision Tree)やニューラルネットワークなど、さまざまなモデルの使用が可能になる。
モデルの再トレーニングを必要としないオンライン学習技術は、予測後の結果を高めるために使用することができる。
論文 参考訳(メタデータ) (2022-12-30T17:19:00Z) - Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots [3.673994921516517]
予測モデルは学習し、モデルベースのコントローラに適用することができるが、これらのモデルはしばしばオフラインで学習される。
このオフライン設定では、トレーニングデータをまず収集し、精巧なトレーニング手順により予測モデルを学ぶ。
本稿では,デプロイ中の動的モデルの精度を継続的に向上するオンライン動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-19T15:51:25Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - PrIU: A Provenance-Based Approach for Incrementally Updating Regression
Models [9.496524884855559]
本稿では,予測精度を犠牲にすることなく,モデルパラメータを漸進的に更新する手法PrIUを提案する。
漸進的に更新されたモデルパラメータの正しさと収束性を証明し、実験的に検証する。
実験結果から, PrIU-optはスクラッチからモデルを再トレーニングするのに対して, 非常に類似したモデルを得るよりも, 最大2桁のスピードアップを達成できることがわかった。
論文 参考訳(メタデータ) (2020-02-26T21:04:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。