論文の概要: Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots
- arxiv url: http://arxiv.org/abs/2207.09344v1
- Date: Tue, 19 Jul 2022 15:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:36:24.580976
- Title: Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots
- Title(参考訳): オンラインダイナミクス学習による予測制御と空中ロボットへの応用
- Authors: Tom Z. Jiahao, Kong Yao Chee, M. Ani Hsieh
- Abstract要約: 予測モデルは学習し、モデルベースのコントローラに適用することができるが、これらのモデルはしばしばオフラインで学習される。
このオフライン設定では、トレーニングデータをまず収集し、精巧なトレーニング手順により予測モデルを学ぶ。
本稿では,デプロイ中の動的モデルの精度を継続的に向上するオンライン動的学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.673994921516517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we consider the task of improving the accuracy of dynamic
models for model predictive control (MPC) in an online setting. Even though
prediction models can be learned and applied to model-based controllers, these
models are often learned offline. In this offline setting, training data is
first collected and a prediction model is learned through an elaborated
training procedure. After the model is trained to a desired accuracy, it is
then deployed in a model predictive controller. However, since the model is
learned offline, it does not adapt to disturbances or model errors observed
during deployment. To improve the adaptiveness of the model and the controller,
we propose an online dynamics learning framework that continually improves the
accuracy of the dynamic model during deployment. We adopt knowledge-based
neural ordinary differential equations (KNODE) as the dynamic models, and use
techniques inspired by transfer learning to continually improve the model
accuracy. We demonstrate the efficacy of our framework with a quadrotor robot,
and verify the framework in both simulations and physical experiments. Results
show that the proposed approach is able to account for disturbances that are
possibly time-varying, while maintaining good trajectory tracking performance.
- Abstract(参考訳): 本研究では,オンライン環境下でのモデル予測制御(MPC)における動的モデルの精度向上を課題とする。
予測モデルは学習し、モデルベースのコントローラに適用することができるが、これらのモデルはしばしばオフラインで学習される。
このオフライン設定では、トレーニングデータをまず収集し、精巧なトレーニング手順により予測モデルを学ぶ。
モデルが望ましい精度でトレーニングされた後、モデル予測コントローラにデプロイされる。
しかしながら、モデルはオフラインで学習されるため、デプロイメント中に観察される障害やモデルエラーには適応しない。
モデルとコントローラの適応性を改善するため,我々は,デプロイ時の動的モデルの精度を継続的に向上させるオンラインダイナミクス学習フレームワークを提案する。
我々は,知識に基づくニューラル常微分方程式(KNODE)を動的モデルとして採用し,移動学習にインスパイアされた手法を用いてモデルの精度を継続的に向上する。
本稿では,四足歩行ロボットを用いたフレームワークの有効性を実証し,シミュレーションと物理実験の両方においてそのフレームワークを検証する。
提案手法は,良好な軌道追跡性能を維持しつつ,時間変化の可能性のある障害を考慮できることを示す。
関連論文リスト
- Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
本稿では,ニューラルネットワークを用いた反復学習セミパラメトリックモデルを自律レースの課題に適用する。
我々のモデルは純粋にパラメトリックモデルよりも正確に学習でき、純粋に非パラメトリックモデルよりもより一般化できることを示す。
論文 参考訳(メタデータ) (2020-11-17T16:24:10Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
データモデリングのために選択されたモデルが(線形/非線形、静的/動的)異なるモデルと独立(最小相関)モデルである場合、予測の精度が向上することが知られている。
アンサンブルモデルを重み付けするために文献で提案された様々なアプローチは、静的な重みセットを使用する。
この問題に対処するため、Reinforcement Learning (RL)アプローチでは、各モデルの重み付けを異なるタイミングで動的に割り当て、更新する。
論文 参考訳(メタデータ) (2020-08-20T10:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。