論文の概要: Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2305.05119v2
- Date: Sat, 17 Jun 2023 05:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 02:21:00.751380
- Title: Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning
- Title(参考訳): デュアルアテンションネットワークを用いた強化学習によるフレキシブルジョブショップスケジューリング
- Authors: Runqing Wang, Gang Wang, Jian Sun, Fang Deng and Jie Chen
- Abstract要約: フレキシブルなジョブショップスケジューリング問題(FJSP)では、複数のマシンで操作を処理でき、操作とマシンの間の複雑な関係が生じる。
近年, 深層強化学習(DRL)を用いて, FJSP解決のための優先派遣規則(PDR)を学習している。
本稿では,Deep機能抽出のための自己注意モデルと,スケーラブルな意思決定のためのDRLの利点を生かした,エンドツーエンド学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 73.19312285906891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flexible manufacturing has given rise to complex scheduling problems such as
the flexible job shop scheduling problem (FJSP). In FJSP, operations can be
processed on multiple machines, leading to intricate relationships between
operations and machines. Recent works have employed deep reinforcement learning
(DRL) to learn priority dispatching rules (PDRs) for solving FJSP. However, the
quality of solutions still has room for improvement relative to that by the
exact methods such as OR-Tools. To address this issue, this paper presents a
novel end-to-end learning framework that weds the merits of self-attention
models for deep feature extraction and DRL for scalable decision-making. The
complex relationships between operations and machines are represented precisely
and concisely, for which a dual-attention network (DAN) comprising several
interconnected operation message attention blocks and machine message attention
blocks is proposed. The DAN exploits the complicated relationships to construct
production-adaptive operation and machine features to support high-quality
decisionmaking. Experimental results using synthetic data as well as public
benchmarks corroborate that the proposed approach outperforms both traditional
PDRs and the state-of-the-art DRL method. Moreover, it achieves results
comparable to exact methods in certain cases and demonstrates favorable
generalization ability to large-scale and real-world unseen FJSP tasks.
- Abstract(参考訳): フレキシブル製造は、フレキシブルなジョブショップスケジューリング問題(FJSP)のような複雑なスケジューリング問題を引き起こしている。
FJSPでは、複数のマシンで操作を処理できるため、操作とマシンの間の複雑な関係が生じる。
近年, 深層強化学習(DRL)を用いて, FJSP解決のための優先派遣規則(PDR)を学習している。
しかし、orツールのような厳密な方法によって、ソリューションの品質は改善の余地がある。
この問題に対処するため,本稿では,深層特徴抽出のための自己注意モデルとスケーラブルな意思決定のためのDRLの利点を生かした,エンドツーエンド学習フレームワークを提案する。
操作と機械間の複雑な関係を正確に簡潔に表現し、複数の相互接続された操作メッセージアテンションブロックと機械メッセージアテンションブロックからなる二重アテンションネットワーク(DAN)を提案する。
DANは複雑な関係を利用して、高品質な意思決定を支援するために生産適応型操作と機械機能を構築する。
合成データと公開ベンチマークを用いた実験結果から,提案手法は従来のPDRと最先端のDRL法の両方に優れることがわかった。
さらに、特定のケースにおける正確な手法に匹敵する結果を達成し、大規模かつ実世界のFJSPタスクに好適な一般化能力を示す。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing [11.509669981978874]
スマートマニュファクチャリングシステムでは、生産性を最大化するためのソリューションを最適化するために、輸送制約付きフレキシブルなジョブショップスケジューリングが不可欠である。
近年, 深部強化学習(DRL)に基づくFJSPT法の開発が, 大規模一般化の課題に直面している。
Heterogeneous Graph Scheduler (HGS) と呼ばれる新しいグラフベースのDRL法を導入する。
論文 参考訳(メタデータ) (2024-02-14T06:49:23Z) - Accelerate Presolve in Large-Scale Linear Programming via Reinforcement
Learning [92.31528918811007]
本稿では,P1)-(P3) を同時に扱うための簡易かつ効率的な強化学習フレームワーク,すなわち,事前解決のための強化学習(RL4Presolve)を提案する。
2つの解法と8つのベンチマーク(実世界と合成)の実験により、RL4Presolveは大規模LPの解法効率を大幅に改善することを示した。
論文 参考訳(メタデータ) (2023-10-18T09:51:59Z) - Deep reinforcement learning for machine scheduling: Methodology, the
state-of-the-art, and future directions [2.4541568670428915]
マシンスケジューリングは、製造ルールとジョブ仕様に準拠しながら、マシンへのジョブ割り当てを最適化することを目的としている。
人工知能の重要な構成要素であるDeep Reinforcement Learning (DRL)は、ゲームやロボティクスなど、さまざまな分野において有望であることを示している。
本稿では、DRLに基づくアプローチの総合的なレビューと比較を行い、その方法論、応用、利点、限界を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T22:45:09Z) - Pointerformer: Deep Reinforced Multi-Pointer Transformer for the
Traveling Salesman Problem [67.32731657297377]
トラベリングセールスマン問題(TSP)は、もともと輸送と物流の領域で発生した古典的な経路最適化問題である。
近年, 深層強化学習は高い推論効率のため, TSP の解法として採用されている。
本稿では,多点変換器をベースとした新しいエンドツーエンドDRL手法であるPointerformerを提案する。
論文 参考訳(メタデータ) (2023-04-19T03:48:32Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Two-Stage Learning For the Flexible Job Shop Scheduling Problem [18.06058556156014]
本稿では,フレキシブルジョブショップスケジューリング問題に対して,ディープラーニングフレームワークを用いて高速かつ正確な近似を生成する可能性について検討する。
本稿では,FJSP決定の階層的性質を明示的にモデル化する2段階学習フレームワークを提案する。
その結果、2SL-FJSPはミリ秒で高品質なソリューションを生成でき、最先端の強化学習手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-01-23T20:23:35Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
本稿では、フレキシブルジョブショップスケジューリング問題(DRC-FJSSP)に深層強化学習(DRL)を適用したメメティックアルゴリズムを提案する。
産業における研究プロジェクトから、フレキシブルマシン、フレキシブルなヒューマンワーカー、作業能力、セットアップと処理操作、材料到着時間、材料製造の請求書の並列タスク、シーケンス依存のセットアップ時間、人間と機械のコラボレーションにおける(一部)自動化タスクを検討する必要性を認識します。
論文 参考訳(メタデータ) (2022-12-21T11:24:32Z) - Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep
Learning Method [44.4747903763245]
ジョブショップスケジューリング問題(Jobs shop Scheduling Problem、JSP)は、様々な産業目的のために日常的に解決される標準最適化問題である。
問題はNPハードであり、中規模のインスタンスでも計算が困難である。
本稿では,問題に対する効率的かつ正確な近似を提供するためのディープラーニングアプローチについて検討する。
論文 参考訳(メタデータ) (2021-10-12T21:15:19Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。