Causal Discovery from Subsampled Time Series with Proxy Variables
- URL: http://arxiv.org/abs/2305.05276v5
- Date: Sun, 24 Dec 2023 11:31:22 GMT
- Title: Causal Discovery from Subsampled Time Series with Proxy Variables
- Authors: Mingzhou Liu, Xinwei Sun, Lingjing Hu, Yizhou Wang
- Abstract summary: In this paper, we propose a constraint-based algorithm that can identify the entire causal structure from subsampled time series.
Our algorithm is nonparametric and can achieve full causal identification.
- Score: 19.699813624529813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring causal structures from time series data is the central interest of
many scientific inquiries. A major barrier to such inference is the problem of
subsampling, i.e., the frequency of measurement is much lower than that of
causal influence. To overcome this problem, numerous methods have been
proposed, yet either was limited to the linear case or failed to achieve
identifiability. In this paper, we propose a constraint-based algorithm that
can identify the entire causal structure from subsampled time series, without
any parametric constraint. Our observation is that the challenge of subsampling
arises mainly from hidden variables at the unobserved time steps. Meanwhile,
every hidden variable has an observed proxy, which is essentially itself at
some observable time in the future, benefiting from the temporal structure.
Based on these, we can leverage the proxies to remove the bias induced by the
hidden variables and hence achieve identifiability. Following this intuition,
we propose a proxy-based causal discovery algorithm. Our algorithm is
nonparametric and can achieve full causal identification. Theoretical
advantages are reflected in synthetic and real-world experiments.
Related papers
- Causal Discovery in Semi-Stationary Time Series [32.424281626708336]
We propose a constraint-based, non-parametric algorithm for discovering causal relations in observational time series.
We show that this algorithm is sound in identifying causal relations on discrete time series.
arXiv Detail & Related papers (2024-07-10T00:55:38Z) - Causal Discovery-Driven Change Point Detection in Time Series [32.424281626708336]
Change point detection in time series seeks to identify times when the probability distribution of time series changes.
In practical applications, we may be interested only in certain components of the time series, exploring abrupt changes in their distributions.
arXiv Detail & Related papers (2024-07-10T00:54:42Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Causal Discovery and Prediction: Methods and Algorithms [0.0]
In this thesis we introduce a generic a-priori assessment of each possible intervention.
We propose an active learning algorithm that identifies the causal relations in any given causal model.
arXiv Detail & Related papers (2023-09-18T01:19:37Z) - Causal Discovery via Conditional Independence Testing with Proxy Variables [35.3493980628004]
The presence of unobserved variables, such as the latent confounder, can introduce bias in conditional independence testing.
We propose a novel hypothesis-testing procedure that can effectively examine the existence of the causal relationship over continuous variables.
arXiv Detail & Related papers (2023-05-09T09:08:39Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints [3.2374399328078285]
Graphical structures estimated by causal learning algorithms from time series data can provide misleading causal information if the causal timescale of the generating process fails to match the measurement timescale of the data.
Existing algorithms provide limited resources to respond to this challenge, and so researchers must either use models that they know are likely misleading, or else forego causal learning entirely.
Existing methods face up-to-four distinct shortfalls, as they might 1) require that the difference between causal and measurement is known; 2) only handle very small number of random variables when the timescale difference is unknown; 3) only apply to pairs of variables; or 4) be unable to
arXiv Detail & Related papers (2022-05-18T22:38:57Z) - Nested Counterfactual Identification from Arbitrary Surrogate
Experiments [95.48089725859298]
We study the identification of nested counterfactuals from an arbitrary combination of observations and experiments.
Specifically, we prove the counterfactual unnesting theorem (CUT), which allows one to map arbitrary nested counterfactuals to unnested ones.
arXiv Detail & Related papers (2021-07-07T12:51:04Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.