論文の概要: Fooling State-of-the-Art Deepfake Detection with High-Quality Deepfakes
- arxiv url: http://arxiv.org/abs/2305.05282v2
- Date: Tue, 16 May 2023 09:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 17:59:12.995248
- Title: Fooling State-of-the-Art Deepfake Detection with High-Quality Deepfakes
- Title(参考訳): 高品質ディープフェイクを用いた食品の深度検出
- Authors: Arian Beckmann, Anna Hilsmann and Peter Eisert
- Abstract要約: 我々は、複数の研究データセットで証明されたディープフェイク検出器が、よく作られた偽物と現実世界のシナリオで未だに苦戦していることを示す。
我々は,90個の高品質のディープフェイクを生成するために,高度な顔ブレンディング技術とともに,顔交換のための新しいオートエンコーダを提案する。
- 参考スコア(独自算出の注目度): 2.0883760606514934
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the rising threat of deepfakes to security and privacy, it is most
important to develop robust and reliable detectors. In this paper, we examine
the need for high-quality samples in the training datasets of such detectors.
Accordingly, we show that deepfake detectors proven to generalize well on
multiple research datasets still struggle in real-world scenarios with
well-crafted fakes. First, we propose a novel autoencoder for face swapping
alongside an advanced face blending technique, which we utilize to generate 90
high-quality deepfakes. Second, we feed those fakes to a state-of-the-art
detector, causing its performance to decrease drastically. Moreover, we
fine-tune the detector on our fakes and demonstrate that they contain useful
clues for the detection of manipulations. Overall, our results provide insights
into the generalization of deepfake detectors and suggest that their training
datasets should be complemented by high-quality fakes since training on mere
research data is insufficient.
- Abstract(参考訳): セキュリティとプライバシーに対するディープフェイクの脅威が高まっているため、堅牢で信頼性の高い検出器を開発することが最も重要である。
本稿では,これらの検出器のトレーニングデータセットにおける高品質なサンプルの必要性について検討する。
したがって、複数の研究データセット上でディープフェイク検出器がうまく一般化できることが証明された。
まず,90個の高品質のディープフェイクを生成するために,高度な顔ブレンディング技術とともに,顔交換のための新しいオートエンコーダを提案する。
第2に、フェイクを最先端の検出器に供給することで、その性能が劇的に低下する。
さらに,偽物の検知器を微調整し,操作の検出に有用な手掛かりがあることを実証する。
全体として,我々はdeepfake検出器の一般化に関する知見を提供し,そのトレーニングデータセットは単なる研究データに対するトレーニングが不十分であるため,高品質なフェイクによって補完されるべきであることが示唆された。
関連論文リスト
- DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
既存の研究は、ある特定のデータセットで検出器をトレーニングし、他の一般的なディープフェイクデータセットでテストすることで、トップノーチ検出アルゴリズムとモデルを識別する。
しかし、これらの「勝者」は現実の世界に潜む無数の現実的で多様なディープフェイクに取り組むために真に応用できるのだろうか?
我々は,40の異なるディープフェイク技術からなるDF40という,高度に多様なディープフェイク検出データセットを構築した。
論文 参考訳(メタデータ) (2024-06-19T12:35:02Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Robustness and Generalizability of Deepfake Detection: A Study with
Diffusion Models [35.188364409869465]
本稿では,ディープフェイクの作り方と識別方法について検討する。
私たちの研究の基盤は、DeepFakeFaceという名の有名人の顔の豊富なコレクションです。
このデータはディープフェイクを見つけるために設計されたアルゴリズムを訓練し、テストするための堅牢な基盤となる。
論文 参考訳(メタデータ) (2023-09-05T13:22:41Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
本研究は,ディープフェイク検出器の一般化性に関する最初の実証的研究である。
本研究では,6つのディープフェイクデータセット,5つのディープフェイク画像検出手法,および2つのモデル拡張アプローチを用いた。
検出器は, 合成法に特有の不要な特性を学習し, 識別的特徴の抽出に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-08-08T10:30:34Z) - Improving Fairness in Deepfake Detection [38.999205139257164]
ディープフェイク検出器の訓練に使用されるデータのバイアスは、異なる人種や性別で検出精度が異なることにつながる。
本稿では、人口統計情報の入手可能な設定と、この情報が欠落している場合の両方を扱う新しい損失関数を提案する。
論文 参考訳(メタデータ) (2023-06-29T02:19:49Z) - Real Face Foundation Representation Learning for Generalized Deepfake
Detection [74.4691295738097]
ディープフェイク技術の出現は、個人のプライバシーと公共の安全に脅威をもたらすため、社会的な問題となっている。
十分な偽の顔を集めることはほぼ不可能であり、既存の検出器があらゆる種類の操作に一般化することは困難である。
本稿では,大規模な実顔データセットから一般表現を学習することを目的としたリアルフェイスファウンデーション表現学習(RFFR)を提案する。
論文 参考訳(メタデータ) (2023-03-15T08:27:56Z) - Why Do Facial Deepfake Detectors Fail? [9.60306700003662]
近年のディープフェイク技術の発展により、ビデオ、画像、オーディオなどの非常に現実的な偽メディアの作成が可能になった。
これらの資料は、偽造、偽情報、さらには国家安全保障に対する脅威など、人間の認証に重大な課題を提起している。
いくつかのディープフェイク検出アルゴリズムが提案されており、ディープフェイク作成者とディープフェイク検出装置との間の武器競争が進行中である。
論文 参考訳(メタデータ) (2023-02-25T20:54:02Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z) - Understanding the Security of Deepfake Detection [23.118012417901078]
本研究では,最先端のディープフェイク検出手法の対向的設定における安全性について検討する。
FaceForensics++やFacebook Deepfake Detection Challengeなど、大規模な公開ディープフェイクデータソースを2つ使用しています。
本研究は, 対戦環境におけるディープフェイク検出手法のセキュリティ上の制約を明らかにした。
論文 参考訳(メタデータ) (2021-07-05T14:18:21Z) - Representative Forgery Mining for Fake Face Detection [52.896286647898386]
ディテクタの精緻化と注目の拡大を導くための注意ベースのデータ拡張フレームワークを提案します。
提案手法は,トップnのセンシティブな顔領域を追跡し,検出者に対して,以前無視された領域にさらに深く掘り下げて,より代表的な偽造を行うように促す。
論文 参考訳(メタデータ) (2021-04-14T03:24:19Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。