論文の概要: Turning Privacy-preserving Mechanisms against Federated Learning
- arxiv url: http://arxiv.org/abs/2305.05355v1
- Date: Tue, 9 May 2023 11:43:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 19:44:15.869328
- Title: Turning Privacy-preserving Mechanisms against Federated Learning
- Title(参考訳): フェデレーション学習に対するプライバシー保護機構の転換
- Authors: Marco Arazzi, Mauro Conti, Antonino Nocera and Stjepan Picek
- Abstract要約: 我々は、連邦学習のための最先端の防衛を無効化できる攻撃を設計する。
提案した攻撃には、2つの動作モードが含まれており、第1は収束抑制(逆モード)に焦点を当て、第2はグローバルフェデレーションモデル(バックドアモード)に誤評価インジェクションを構築することを目的としている。
実験の結果,バックドアモードで実施したテストの93%のケースにおいて,両モードにおける攻撃の有効性が示され,敵モードと完全有効バックドアの全テストにおいて平均60%のパフォーマンス低下が回復した。
- 参考スコア(独自算出の注目度): 22.88443008209519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, researchers have successfully employed Graph Neural Networks (GNNs)
to build enhanced recommender systems due to their capability to learn patterns
from the interaction between involved entities. In addition, previous studies
have investigated federated learning as the main solution to enable a native
privacy-preserving mechanism for the construction of global GNN models without
collecting sensitive data into a single computation unit. Still, privacy issues
may arise as the analysis of local model updates produced by the federated
clients can return information related to sensitive local data. For this
reason, experts proposed solutions that combine federated learning with
Differential Privacy strategies and community-driven approaches, which involve
combining data from neighbor clients to make the individual local updates less
dependent on local sensitive data. In this paper, we identify a crucial
security flaw in such a configuration, and we design an attack capable of
deceiving state-of-the-art defenses for federated learning. The proposed attack
includes two operating modes, the first one focusing on convergence inhibition
(Adversarial Mode), and the second one aiming at building a deceptive rating
injection on the global federated model (Backdoor Mode). The experimental
results show the effectiveness of our attack in both its modes, returning on
average 60% performance detriment in all the tests on Adversarial Mode and
fully effective backdoors in 93% of cases for the tests performed on Backdoor
Mode.
- Abstract(参考訳): 近年、研究者はグラフニューラルネットワーク(GNN)を使用して、関連するエンティティ間の相互作用からパターンを学習する能力により、強化されたレコメンデータシステムの構築に成功した。
さらに,グローバルなGNNモデル構築のためのネイティブプライバシ保護機構を,単一の計算ユニットに機密データを収集することなく実現するための主要なソリューションとして,フェデレーション学習を検討した。
それでも、フェデレーションされたクライアントが生成するローカルモデル更新の分析が、機密性の高いローカルデータに関連する情報を返却できるため、プライバシの問題が発生する可能性がある。
このため、専門家たちは、フェデレーション学習と差分プライバシー戦略とコミュニティ主導のアプローチを組み合わせたソリューションを提案しました。
本稿では,このような構成において重要なセキュリティ上の欠陥を特定し,フェデレーション学習における最先端の防御を欺く攻撃をデザインする。
提案手法は, 収束抑制(攻撃モード)に着目した2つの操作モードと, グローバルフェデレートモデル(バックドアモード)への騙し的評価インジェクションの構築を目的とした2つの攻撃モードを含む。
実験の結果,バックドアモードで実施したテストの93%のケースにおいて,両モードにおける攻撃の有効性が示され,すべてのテストにおいて平均60%のパフォーマンス低下が回復した。
関連論文リスト
- Attribute Inference Attacks for Federated Regression Tasks [14.152503562997662]
フェデレートラーニング(FL)は、クライアントがデータをローカライズしながら、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
近年の研究では、FLの訓練段階が再建攻撃に弱いことが判明している。
FL環境における回帰タスクに特化したモデルベースAIAを提案する。
論文 参考訳(メタデータ) (2024-11-19T18:06:06Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Identifying Backdoor Attacks in Federated Learning via Anomaly Detection [31.197488921578984]
フェデレーション学習はバックドア攻撃に弱い。
本稿では,共有モデル更新を検証し,攻撃に対する効果的な防御方法を提案する。
提案手法が最先端のバックドア攻撃を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2022-02-09T07:07:42Z) - Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks [0.5156484100374059]
我々は,3つの異なるデータセットを用いて,連邦学習環境(FL)に敵対的攻撃を仕掛けた。
この攻撃は、GAN(Generative Adversarial Network)を利用して学習プロセスに影響を及ぼした。
対象者の実際のデータを,すべての適用データセットを用いて共有グローバルモデルパラメータから再構成した。
論文 参考訳(メタデータ) (2021-08-02T08:12:43Z) - RobustFed: A Truth Inference Approach for Robust Federated Learning [9.316565110931743]
フェデレートラーニング(Federated Learning)は、クライアントが中央サーバのオーケストレーションの下で協調的にグローバルなモデルをトレーニングすることを可能にするフレームワークである。
統合学習における集約ステップは、中央サーバがクライアントの動作を管理することができないため、敵攻撃に対して脆弱である。
本稿では,クラウドソーシングにおける真理推論手法に着想を得た新しいロバスト集約アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-18T09:34:57Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。