論文の概要: Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks
- arxiv url: http://arxiv.org/abs/2108.00701v1
- Date: Mon, 2 Aug 2021 08:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 23:16:22.680058
- Title: Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks
- Title(参考訳): 生成型adversarial networkに基づく連合学習システムにおける情報盗み
- Authors: Yuwei Sun, Ng Chong, Hideya Ochiai
- Abstract要約: 我々は,3つの異なるデータセットを用いて,連邦学習環境(FL)に敵対的攻撃を仕掛けた。
この攻撃は、GAN(Generative Adversarial Network)を利用して学習プロセスに影響を及ぼした。
対象者の実際のデータを,すべての適用データセットを用いて共有グローバルモデルパラメータから再構成した。
- 参考スコア(独自算出の注目度): 0.5156484100374059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An attack on deep learning systems where intelligent machines collaborate to
solve problems could cause a node in the network to make a mistake on a
critical judgment. At the same time, the security and privacy concerns of AI
have galvanized the attention of experts from multiple disciplines. In this
research, we successfully mounted adversarial attacks on a federated learning
(FL) environment using three different datasets. The attacks leveraged
generative adversarial networks (GANs) to affect the learning process and
strive to reconstruct the private data of users by learning hidden features
from shared local model parameters. The attack was target-oriented drawing data
with distinct class distribution from the CIFAR- 10, MNIST, and Fashion-MNIST
respectively. Moreover, by measuring the Euclidean distance between the real
data and the reconstructed adversarial samples, we evaluated the performance of
the adversary in the learning processes in various scenarios. At last, we
successfully reconstructed the real data of the victim from the shared global
model parameters with all the applied datasets.
- Abstract(参考訳): インテリジェントマシンが協調して問題解決を行うディープラーニングシステムへの攻撃は、ネットワーク内のノードが重要な判断に誤りを犯す可能性がある。
同時に、AIのセキュリティとプライバシーに関する懸念は、複数の分野の専門家の注意を喚起している。
本研究では,3つの異なるデータセットを用いて,FL環境に対する敵攻撃の実施に成功した。
この攻撃はGANを利用して学習プロセスに影響を与え、共有されたローカルモデルパラメータから隠れた特徴を学習することでユーザのプライベートデータを再構築する。
攻撃はターゲット指向の描画データであり、それぞれcifar-10,mnist, fashion-mnistと異なるクラス分布を示した。
さらに, 実データと再構成した逆数サンプルとのユークリッド距離を計測することにより, 種々のシナリオにおいて, 学習過程における逆数の性能を評価した。
最後に,すべての適用データセットを用いて,共有グローバルモデルパラメータから被害者の実データを再構築することに成功しました。
関連論文リスト
- Attribute Inference Attacks for Federated Regression Tasks [14.152503562997662]
フェデレートラーニング(FL)は、クライアントがデータをローカライズしながら、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
近年の研究では、FLの訓練段階が再建攻撃に弱いことが判明している。
FL環境における回帰タスクに特化したモデルベースAIAを提案する。
論文 参考訳(メタデータ) (2024-11-19T18:06:06Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - Turning Privacy-preserving Mechanisms against Federated Learning [22.88443008209519]
我々は、連邦学習のための最先端の防衛を無効化できる攻撃を設計する。
提案した攻撃には、2つの動作モードが含まれており、第1は収束抑制(逆モード)に焦点を当て、第2はグローバルフェデレーションモデル(バックドアモード)に誤評価インジェクションを構築することを目的としている。
実験の結果,バックドアモードで実施したテストの93%のケースにおいて,両モードにおける攻撃の有効性が示され,敵モードと完全有効バックドアの全テストにおいて平均60%のパフォーマンス低下が回復した。
論文 参考訳(メタデータ) (2023-05-09T11:43:31Z) - Network-Level Adversaries in Federated Learning [21.222645649379672]
ネットワークレベルの敵がフェデレーション学習モデルの訓練に与える影響について検討する。
攻撃者は、慎重に選択されたクライアントからネットワークトラフィックを落とすことで、ターゲット個体数のモデル精度を著しく低下させることができることを示す。
我々は,攻撃の影響を緩和するサーバサイドディフェンスを開発し,攻撃対象の精度に肯定的に寄与する可能性のあるクライアントを特定し,アップサンプリングすることで,攻撃の影響を緩和する。
論文 参考訳(メタデータ) (2022-08-27T02:42:04Z) - Adversarial Representation Sharing: A Quantitative and Secure
Collaborative Learning Framework [3.759936323189418]
コミュニケーションのオーバーヘッドが低く,タスク依存度が低いため,共同学習において表現学習には独特なアドバンテージがあることがわかった。
ARSは、ユーザがモデルを訓練するためにデータの表現を共有する協調学習フレームワークである。
我々は,本機構がモデル逆攻撃に対して有効であることを実証し,プライバシとユーティリティのバランスを実現する。
論文 参考訳(メタデータ) (2022-03-27T13:29:15Z) - Privacy-Preserving Federated Learning on Partitioned Attributes [6.661716208346423]
フェデレーション学習は、ローカルデータやモデルを公開することなく、協調的なトレーニングを促進する。
ローカルモデルをチューニングし、プライバシー保護された中間表現をリリースする逆学習ベースの手順を紹介します。
精度低下を緩和するために,前方後方分割アルゴリズムに基づく防御法を提案する。
論文 参考訳(メタデータ) (2021-04-29T14:49:14Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。