Large Language Models Need Holistically Thought in Medical
Conversational QA
- URL: http://arxiv.org/abs/2305.05410v2
- Date: Wed, 10 May 2023 13:40:11 GMT
- Title: Large Language Models Need Holistically Thought in Medical
Conversational QA
- Authors: Yixuan Weng, Bin Li, Fei Xia, Minjun Zhu, Bin Sun, Shizhu He, Kang
Liu, Jun Zhao
- Abstract summary: The Holistically Thought (HoT) method is designed to guide the LLMs to perform the diffused and focused thinking for generating high-quality medical responses.
The proposed HoT method has been evaluated through automated and manual assessments in three different medical CQA datasets.
- Score: 24.2230289885612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The medical conversational question answering (CQA) system aims at providing
a series of professional medical services to improve the efficiency of medical
care. Despite the success of large language models (LLMs) in complex reasoning
tasks in various fields, such as mathematics, logic, and commonsense QA, they
still need to improve with the increased complexity and specialization of the
medical field. This is because medical CQA tasks require not only strong
medical reasoning, but also the ability to think broadly and deeply. In this
paper, to address these challenges in medical CQA tasks that need to be
considered and understood in many aspects, we propose the Holistically Thought
(HoT) method, which is designed to guide the LLMs to perform the diffused and
focused thinking for generating high-quality medical responses. The proposed
HoT method has been evaluated through automated and manual assessments in three
different medical CQA datasets containing the English and Chinese languages.
The extensive experimental results show that our method can produce more
correctness, professional, and considerate answers than several
state-of-the-art (SOTA) methods, manifesting its effectiveness. Our code in
https://github.com/WENGSYX/HoT.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor? [33.70022886795487]
OpenAI's o1 stands out as the first model with a chain-of-thought technique using reinforcement learning strategies.
This report provides a comprehensive exploration of o1 on different medical scenarios, examining 3 key aspects: understanding, reasoning, and multilinguality.
arXiv Detail & Related papers (2024-09-23T17:59:43Z) - COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain [1.6752458252726457]
Large Language Models (LLMs) constitute a breakthrough state-of-the-art Artificial Intelligence (AI) technology.
We outline Cognitive Network Evaluation Toolkit for Medical Domains (COGNET-MD)
We propose a scoring-framework with increased difficulty to assess the ability of LLMs in interpreting medical text.
arXiv Detail & Related papers (2024-05-17T16:31:56Z) - MedLM: Exploring Language Models for Medical Question Answering Systems [2.84801080855027]
Large Language Models (LLMs) with their advanced generative capabilities have shown promise in various NLP tasks.
This study aims to compare the performance of general and medical-specific distilled LMs for medical Q&A.
The findings will provide valuable insights into the suitability of different LMs for specific applications in the medical domain.
arXiv Detail & Related papers (2024-01-21T03:37:47Z) - XAIQA: Explainer-Based Data Augmentation for Extractive Question
Answering [1.1867812760085572]
We introduce a novel approach, XAIQA, for generating synthetic QA pairs at scale from data naturally available in electronic health records.
Our method uses the idea of a classification model explainer to generate questions and answers about medical concepts corresponding to medical codes.
arXiv Detail & Related papers (2023-12-06T15:59:06Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Medical Visual Question Answering: A Survey [55.53205317089564]
Medical Visual Question Answering(VQA) is a combination of medical artificial intelligence and popular VQA challenges.
Given a medical image and a clinically relevant question in natural language, the medical VQA system is expected to predict a plausible and convincing answer.
arXiv Detail & Related papers (2021-11-19T05:55:15Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQA dataset contains multiple-choice questions authorized for the public healthcare specialization exam.
These questions are the most challenging for current QA systems.
We present a Multi-step reasoning with Knowledge extraction framework (MurKe)
We are striving to make full use of off-the-shelf pre-trained models.
arXiv Detail & Related papers (2020-08-06T02:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.