論文の概要: Deep Learning and Geometric Deep Learning: an introduction for
mathematicians and physicists
- arxiv url: http://arxiv.org/abs/2305.05601v1
- Date: Tue, 9 May 2023 16:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 19:13:13.840210
- Title: Deep Learning and Geometric Deep Learning: an introduction for
mathematicians and physicists
- Title(参考訳): 深層学習と幾何学的深層学習:数学者と物理学者への紹介
- Authors: R. Fioresi, F. Zanchetta
- Abstract要約: 本稿では,Deep LearningとGeometric Deep Learningの新たな成功アルゴリズムの内部機能について論じる。
これらのアルゴリズムの主要な要素であるスコアと損失関数について検討し、モデルのトレーニングにおける主要なステップを説明します。
Kullback-Leibler分散、回帰、多層パーセプトロン、ユニバーサル近似理論について議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this expository paper we want to give a brief introduction, with few key
references for further reading, to the inner functioning of the new and
successfull algorithms of Deep Learning and Geometric Deep Learning with a
focus on Graph Neural Networks. We go over the key ingredients for these
algorithms: the score and loss function and we explain the main steps for the
training of a model. We do not aim to give a complete and exhaustive treatment,
but we isolate few concepts to give a fast introduction to the subject. We
provide some appendices to complement our treatment discussing Kullback-Leibler
divergence, regression, Multi-layer Perceptrons and the Universal Approximation
Theorem.
- Abstract(参考訳): 本稿では,グラフニューラルネットワークに着目した深層学習と幾何学的深層学習の新たなアルゴリズムの内的機能について,さらに読解のための重要な資料を少なからぬ要点として,簡単な紹介をしたい。
これらのアルゴリズムの主要な要素であるスコアと損失関数について検討し、モデルのトレーニングにおける主要なステップを説明します。
完全かつ徹底的な治療を目標としないが、いくつかの概念を分離し、その主題を素早く紹介する。
kullback-leibler divergence, regression, multi-layer perceptrons and the universal approximation theoremを議論する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - Mathematical Introduction to Deep Learning: Methods, Implementations,
and Theory [4.066869900592636]
この本は、ディープラーニングアルゴリズムのトピックについて紹介することを目的としている。
本稿では,ディープラーニングアルゴリズムの本質的構成要素を数学的に詳細に概説する。
論文 参考訳(メタデータ) (2023-10-31T11:01:23Z) - Bayesian Learning for Neural Networks: an algorithmic survey [95.42181254494287]
この自己完結型調査は、ベイズ学習ニューラルネットワークの原理とアルゴリズムを読者に紹介する。
アクセシブルで実践的な視点からこのトピックを紹介します。
論文 参考訳(メタデータ) (2022-11-21T21:36:58Z) - A Study of the Mathematics of Deep Learning [1.14219428942199]
深層学習」/「深層ニューラルネットワーク」は、人工知能の最先端のタスクにますます展開されている技術的驚異です。
この論文は、これらの新しいディープラーニングのパラダイムの強力な理論基盤を構築するためのいくつかのステップを踏む。
論文 参考訳(メタデータ) (2021-04-28T22:05:54Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
過去10年間、データサイエンスと機械学習の実験的な革命が、ディープラーニングの手法によって生まれた。
このテキストは、統一幾何学的原理によって事前に定義された規則性を公開することに関するものである。
CNN、RNN、GNN、Transformersなど、最も成功したニューラルネットワークアーキテクチャを研究するための一般的な数学的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-27T21:09:51Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
本稿では,ネットワークトレーニング中の2つの予測系間の確率的融合を含む新しい枠組みを提案する。
本ネットワークは,異なる対応間の強い相互作用を強制することにより学習を駆動する自己追跡グラフニューラルネットワークを特徴とする。
学習に適したモーションパーマリゼーションを提案し、難易度の高いDeMoNおよびScanNetデータセットで最新のパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-04-16T17:59:06Z) - A Survey of Deep Meta-Learning [1.2891210250935143]
ディープニューラルネットワークは、巨大なデータセットと十分な計算リソースを提示することで、大きな成功を収めることができる。
しかし、新しい概念を素早く習得する能力は限られている。
ディープメタラーニング(Deep Meta-Learning)は、ネットワークが学習方法を学ぶことを可能にすることでこの問題に対処するアプローチのひとつだ。
論文 参考訳(メタデータ) (2020-10-07T17:09:02Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
トラベリングセールスパーソン問題(TSP)のようなグラフ最適化問題に対するニューラルネットワークソルバのエンドツーエンドトレーニングは近年,関心が高まっている。
最先端の学習駆動アプローチは、自明に小さなサイズで訓練された場合、古典的な解法と密接に関係するが、実践的な規模で学習ポリシーを大規模に一般化することはできない。
この研究は、トレーニングで見られるものよりも大きいインスタンスへの一般化を促進する、原則化されたバイアス、モデルアーキテクチャ、学習アルゴリズムを特定するために、最近の論文を統一するエンドツーエンドのニューラルネットワークパイプラインを提示している。
論文 参考訳(メタデータ) (2020-06-12T10:14:15Z) - Structure preserving deep learning [1.2263454117570958]
深層学習は、大きな関心事のトピックとして、前景に浮かび上がっています。
ディープラーニングの適用には、いくつかの挑戦的な数学的問題がある。
既存のディープラーニング手法の構造を数学的に理解する努力が増えている。
論文 参考訳(メタデータ) (2020-06-05T10:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。