論文の概要: A duality framework for analyzing random feature and two-layer neural networks
- arxiv url: http://arxiv.org/abs/2305.05642v2
- Date: Mon, 14 Oct 2024 01:08:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:04:40.767763
- Title: A duality framework for analyzing random feature and two-layer neural networks
- Title(参考訳): ランダム特徴と2層ニューラルネットワーク解析のための双対性フレームワーク
- Authors: Hongrui Chen, Jihao Long, Lei Wu,
- Abstract要約: 我々は$mathcalF_p,pi$およびBarron空間内の関数の学習問題を考察する。
近似と推定の二重同値を確立し、それを用いて先行する関数空間の学習を研究する。
- 参考スコア(独自算出の注目度): 7.400520323325074
- License:
- Abstract: We consider the problem of learning functions within the $\mathcal{F}_{p,\pi}$ and Barron spaces, which play crucial roles in understanding random feature models (RFMs), two-layer neural networks, as well as kernel methods. Leveraging tools from information-based complexity (IBC), we establish a dual equivalence between approximation and estimation, and then apply it to study the learning of the preceding function spaces. The duality allows us to focus on the more tractable problem between approximation and estimation. To showcase the efficacy of our duality framework, we delve into two important but under-explored problems: 1) Random feature learning beyond kernel regime: We derive sharp bounds for learning $\mathcal{F}_{p,\pi}$ using RFMs. Notably, the learning is efficient without the curse of dimensionality for $p>1$. This underscores the extended applicability of RFMs beyond the traditional kernel regime, since $\mathcal{F}_{p,\pi}$ with $p<2$ is strictly larger than the corresponding reproducing kernel Hilbert space (RKHS) where $p=2$. 2) The $L^\infty$ learning of RKHS: We establish sharp, spectrum-dependent characterizations for the convergence of $L^\infty$ learning error in both noiseless and noisy settings. Surprisingly, we show that popular kernel ridge regression can achieve near-optimal performance in $L^\infty$ learning, despite it primarily minimizing square loss. To establish the aforementioned duality, we introduce a type of IBC, termed $I$-complexity, to measure the size of a function class. Notably, $I$-complexity offers a tight characterization of learning in noiseless settings, yields lower bounds comparable to Le Cam's in noisy settings, and is versatile in deriving upper bounds. We believe that our duality framework holds potential for broad application in learning analysis across more scenarios.
- Abstract(参考訳): 我々は、ランダム特徴モデル(RFM)、二層ニューラルネットワーク、カーネル手法の理解において重要な役割を果たす、$\mathcal{F}_{p,\pi}$およびBarron空間内の関数の学習問題を考察する。
情報ベース複雑性(IBC)からツールを活用することで、近似と推定の二重同値を確立し、それを用いて先行する関数空間の学習を研究する。
この双対性により、近似と推定の間のより難解な問題に焦点を合わせることができる。
1) カーネル体制を超えたランダムな特徴学習: RFMを用いて学習するために鋭い境界を導出する。
特に、学習は次元性の呪いなしで、$p>1$で効率的である。
これは、$\mathcal{F}_{p,\pi}$ with $p<2$ が対応する再生カーネルヒルベルト空間 (RKHS) よりも厳密に大きいので、従来のカーネル体制を超えた RFM の適用可能性を示している。
2) RKHS の $L^\infty$ 学習: ノイズのない,ノイズの多い設定で, 学習誤差が$L^\infty$ の収束のために, 鋭くスペクトル依存的な特徴付けを確立する。
意外なことに、一般的なカーネルリッジの回帰は、主に平方損失を最小限に抑えつつも、L^\infty$学習においてほぼ最適性能が得られることを示す。
上記の双対性を確立するために、関数クラスのサイズを測定するために$I$-complexityと呼ばれるIBCのタイプを導入する。
特に、$I$-complexityは、ノイズのない設定での学習の厳密な特徴を提供し、ノイズの多い設定でル・カムに匹敵する低い境界を与え、上界の導出に汎用性がある。
我々の双対性フレームワークは、より多くのシナリオにまたがる学習分析の幅広い応用の可能性を秘めていると信じています。
関連論文リスト
- Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods [0.0]
我々はBrownian Kernel Neural Network (BKerNN) と呼ばれる推定器の効率的な手法を提案する。
BKerNNの予測リスクは、O(min((d/n)1/2, n-1/6)$(対数因子まで)の明示的な高い確率で最小限のリスクに収束することを示す。
論文 参考訳(メタデータ) (2024-07-24T13:46:50Z) - Smoothed Analysis for Learning Concepts with Low Intrinsic Dimension [17.485243410774814]
教師付き学習の伝統的なモデルでは、学習者の目標は、あるクラスから最も適した概念の競争的($epsilon$以内)な仮説を出力することである。
学習者が最高の無知としか競合しないスムーズな分析フレームワークを導入する。
時間内に$k$-halfspacesの交点を前向きに学習する最初のアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-07-01T04:58:36Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Random features and polynomial rules [0.0]
本稿では,ガウスデータを用いた一般教師付き学習問題に対するランダム特徴モデルの性能の一般化について述べる。
我々は、$Dto infty$と$P/DK$,$N/DL$の間の少なくとも一方が有限である極限から遠く離れた良い合意を見出す。
論文 参考訳(メタデータ) (2024-02-15T18:09:41Z) - A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning
with General Function Approximation [66.26739783789387]
我々は、強化学習のための新しいアルゴリズム、MQL-UCBを用いたモノトニックQ-Learningを提案する。
MQL-UCBは、$tildeO(dsqrtHK)$の最小限の後悔を実現する。
本研究は,非線形関数近似を用いたサンプル効率およびデプロイメント効率のよいQ-ラーニングの設計に重点を置いている。
論文 参考訳(メタデータ) (2023-11-26T08:31:57Z) - Variance-reduced accelerated methods for decentralized stochastic
double-regularized nonconvex strongly-concave minimax problems [7.5573375809946395]
我々は、ピアツーピア通信により、$m$のコンピューティングエージェントのネットワークが協調すると考えている。
我々のアルゴリズムフレームワークは、二変数のコンセンサス制約を取り除くために、アグラジアン乗算器を導入している。
我々の知る限りでは、これはNCSCミニマックス問題に対する収束保証を、原始変数と双対変数の両方に適用する一般の非正規化器で提供する最初の研究である。
論文 参考訳(メタデータ) (2023-07-14T01:32:16Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
本稿では、強化学習(RL)における深部神経機能近似の理論的研究について述べる。
我々は、Besov(およびBarron)関数空間によって与えられるディープ(および2層)ニューラルネットワークによる$epsilon$-greedy探索により、バリューベースのアルゴリズムに焦点を当てる。
我々の解析は、ある平均測度$mu$の上の$L2(mathrmdmu)$-integrable空間における時間差誤差を再構成し、非イド設定の下で一般化問題に変換する。
論文 参考訳(メタデータ) (2022-09-15T15:42:47Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
テュバコフ雑音の存在下でのハーフスペースの学習可能性について検討する。
真半空間に関して誤分類誤差$epsilon$を達成するアルゴリズムを与える。
論文 参考訳(メタデータ) (2020-06-11T14:25:02Z) - Kernel-Based Reinforcement Learning: A Finite-Time Analysis [53.47210316424326]
モデルに基づく楽観的アルゴリズムであるKernel-UCBVIを導入する。
スパース報酬を伴う連続MDPにおける我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2020-04-12T12:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。