論文の概要: Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
- arxiv url: http://arxiv.org/abs/2404.18769v2
- Date: Tue, 25 Jun 2024 20:08:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:35:32.263832
- Title: Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
- Title(参考訳): Norm Constrained, Over-parameterized, Two-layer Neural Networks を用いた学習
- Authors: Fanghui Liu, Leello Dadi, Volkan Cevher,
- Abstract要約: 近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
- 参考スコア(独自算出の注目度): 54.177130905659155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks as the curse of dimensionality (CoD) cannot be evaded when trying to approximate even a single ReLU neuron (Bach, 2017). In this paper, we study a suitable function space for over-parameterized two-layer neural networks with bounded norms (e.g., the path norm, the Barron norm) in the perspective of sample complexity and generalization properties. First, we show that the path norm (as well as the Barron norm) is able to obtain width-independence sample complexity bounds, which allows for uniform convergence guarantees. Based on this result, we derive the improved result of metric entropy for $\epsilon$-covering up to $O(\epsilon^{-\frac{2d}{d+2}})$ ($d$ is the input dimension and the depending constant is at most linear order of $d$) via the convex hull technique, which demonstrates the separation with kernel methods with $\Omega(\epsilon^{-d})$ to learn the target function in a Barron space. Second, this metric entropy result allows for building a sharper generalization bound under a general moment hypothesis setting, achieving the rate at $O(n^{-\frac{d+2}{2d+2}})$. Our analysis is novel in that it offers a sharper and refined estimation for metric entropy with a linear dimension dependence and unbounded sampling in the estimation of the sample error and the output error.
- Abstract(参考訳): 近年の研究では、再生カーネルヒルベルト空間(RKHS)は、次元性の呪い(CoD)が単一のReLUニューロンでさえも回避できないため、ニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている(Bach, 2017)。
本稿では,サンプル複雑性と一般化特性の観点から,境界ノルム(パスノルム,バロンノルム)を持つ過パラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
まず、経路ノルム(およびバロンノルム)が、一様収束を保証するために、幅独立なサンプル複雑性境界を得ることができることを示す。
この結果に基づき、$\epsilon$-covering to $O(\epsilon^{-\frac{2d}{d+2}})$$$d$は入力次元であり、依存定数は凸船体技術により最も直線的な$d$である。
第二に、この計量エントロピーの結果は、一般的なモーメント仮説設定の下でよりシャープな一般化を構築することができ、$O(n^{-\frac{d+2}{2d+2}})$でその速度を達成できる。
試料誤差と出力誤差の推定において, 線形次元依存性と非有界サンプリングを有する計量エントロピーを, より鋭く, より精密に推定する手法が提案されている。
関連論文リスト
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
ディープ非パラメトリック回帰に関する既存の理論は、入力データが低次元多様体上にある場合、ディープニューラルネットワークは本質的なデータ構造に適応できることを示した。
本稿では,$mathcalS$で表される$mathbbRd$のサブセットに入力データが集中するという緩和された仮定を導入する。
論文 参考訳(メタデータ) (2023-06-26T17:13:31Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
我々は、高次元 $ell_infty$-approachability 問題を、低次元の擬ノルムアプローチ可能性問題に変換する。
我々は、$ell$や他のノルムに対するアプローチ可能性に関する以前の研究に類似した疑似ノルムアプローチ可能性のアルゴリズム理論を開発する。
論文 参考訳(メタデータ) (2023-02-03T03:19:14Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
2層ReLUネットワークに必要なニューロン数を著しく削減する方法を示す。
また、事前の作業を改善するための新しい下位境界を証明し、ある仮定の下では、最善を尽くすことができることを証明します。
論文 参考訳(メタデータ) (2022-06-26T06:51:31Z) - Single Trajectory Nonparametric Learning of Nonlinear Dynamics [8.438421942654292]
力学系の1つの軌道が与えられた場合、非パラメトリック最小二乗推定器(LSE)の性能を解析する。
我々は最近開発された情報理論手法を活用し、非仮説クラスに対するLSEの最適性を確立する。
我々は、リプシッツ力学、一般化線形モデル、再生ケルネルヒルベルト空間(RKHS)のある種のクラスで記述される関数によって記述される力学など、実用上の関心のあるいくつかのシナリオを専門とする。
論文 参考訳(メタデータ) (2022-02-16T19:38:54Z) - Fundamental tradeoffs between memorization and robustness in random
features and neural tangent regimes [15.76663241036412]
モデルがトレーニングのごく一部を記憶している場合、そのソボレフ・セミノルムは低い有界であることを示す。
実験によって初めて、(iv)ミンノルム補間器の堅牢性における多重発色現象が明らかになった。
論文 参考訳(メタデータ) (2021-06-04T17:52:50Z) - Sample Complexity and Overparameterization Bounds for Projection-Free
Neural TD Learning [38.730333068555275]
神経td学習の既存の解析は、無限幅解析または(ランダム)コンパクト集合内のネットワークパラメータの制約に依存している。
poly(overlinenu,1/epsilon)$以上の幅の2層reluネットワークを備えたプロジェクションフリーtd学習は、$poly(overlinenu,1/epsilon)$イテレーションまたはサンプルを与えられたエラー$epsilon$で真の値関数に収束する。
論文 参考訳(メタデータ) (2021-03-02T01:05:19Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
基本最小二乗構成におけるノイズレスモデルについて検討する。
最適予測器が完全に入力に適合すると仮定し、$langletheta_*, phi(X) rangle = Y$, ここで$phi(X)$は無限次元の非線型特徴写像を表す。
論文 参考訳(メタデータ) (2021-02-05T14:02:20Z) - Large-time asymptotics in deep learning [0.0]
トレーニングにおける最終時間の$T$(対応するResNetの深さを示す可能性がある)の影響について検討する。
古典的な$L2$-正規化経験的リスク最小化問題に対して、トレーニングエラーが$mathcalOleft(frac1Tright)$のほとんどであることを示す。
$ellp$-距離損失の設定において、トレーニングエラーと最適パラメータの両方が$mathcalOleft(e-mu)の順序のほとんどであることを示す。
論文 参考訳(メタデータ) (2020-08-06T07:33:17Z) - Neural Networks are Convex Regularizers: Exact Polynomial-time Convex
Optimization Formulations for Two-layer Networks [70.15611146583068]
我々は、線形整列ユニット(ReLU)を用いた2層ニューラルネットワークのトレーニングの正確な表現を開発する。
我々の理論は半無限双対性と最小ノルム正規化を利用する。
論文 参考訳(メタデータ) (2020-02-24T21:32:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。