Nagaoka ferromagnetism in doped Hubbard models in optical lattices
- URL: http://arxiv.org/abs/2305.05683v1
- Date: Tue, 9 May 2023 18:00:00 GMT
- Title: Nagaoka ferromagnetism in doped Hubbard models in optical lattices
- Authors: Rhine Samajdar and R. N. Bhatt
- Abstract summary: Recent advances in quantum simulation have enabled the study of doped Hubbard models in ultracold systems.
We examine a realistic variant of such a model wherein any second on a single lattice is weakly bound to the first one.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The search for ferromagnetism in the Hubbard model has been a problem of
outstanding interest since Nagaoka's original proposal in 1966. Recent advances
in quantum simulation have today enabled the study of tunable doped Hubbard
models in ultracold atomic systems. Here, we examine a realistic variant of
such a model wherein any second electron on a single lattice site is weakly
bound compared to the first one. Employing large-scale density-matrix
renormalization group calculations, we establish the existence of high-spin
ground states on square and triangular lattices, analyze the microscopic
mechanisms behind their origin, and investigate the interplay between
ferromagnetism and other competing orders, such as stripes. Our results also
explain$\unicode{x2014}$and shed new light on$\unicode{x2014}$the intriguing
observations of ferromagnetic correlations in recent optical-lattice
experiments.
Related papers
- Itinerant magnetism in Hubbard models with long-range interactions [0.0]
A wide variety of platforms, ranging from semiconductor quantum-dot arrays to mo'e materials, have recently emerged as powerful quantum simulators.
We investigate the effects of the Hubbard model which includes long-dimensional lattices.
For small electron dopings, we uncover a rich variety of magnetically ordered numerically states.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Amorphous quantum magnets in a two-dimensional Rydberg atom array [44.99833362998488]
We propose to explore amorphous quantum magnets with an analog quantum simulator.
We first present an algorithm to generate amorphous quantum magnets, suitable for Rydberg simulators of the Ising model.
We then use semiclassical approaches to get a preliminary insight of the physics of the model.
arXiv Detail & Related papers (2024-02-05T10:07:10Z) - Polaronic mechanism of Nagaoka ferromagnetism in Hubbard models [0.0]
Nagaoka-type ferromagnetism has recently enjoyed renewed attention with the advent of a variety of experimental platforms.
Here, we demonstrate a universal mechanism for Nagaoka ferromagnetism.
arXiv Detail & Related papers (2023-11-15T19:00:00Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Antiferromagnetic bosonic $t$-$J$ models and their quantum simulation in tweezer arrays [0.0]
We propose an experimental scheme to realize bosonic t-J models via encoding the local Hilbert space in a set of three internal atomic or molecular states.
By engineering antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic order similar to that in high-$T_c$ cuprates can be realized.
arXiv Detail & Related papers (2023-05-03T17:59:59Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Numerical modeling of the multi-stage Stern$\unicode{x2013}$Gerlach
experiment by Frisch and Segr\`e using co-quantum dynamics via the Bloch
equation [1.53119329713143]
We numerically reproduce the first multi-stage Stern$ Blochx2013$lach experiment, within the context of novel co-quantum dynamics theory.
arXiv Detail & Related papers (2022-08-29T09:27:31Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.