Nagaoka ferromagnetism in doped Hubbard models in optical lattices
- URL: http://arxiv.org/abs/2305.05683v2
- Date: Fri, 22 Nov 2024 05:45:48 GMT
- Title: Nagaoka ferromagnetism in doped Hubbard models in optical lattices
- Authors: Rhine Samajdar, R. N. Bhatt,
- Abstract summary: ferromagnetism in the Hubbard model has been a problem of outstanding since 1966.
Recent advances in quantum simulation have enabled the study of doped Hubbard models in atomic systems.
- Score: 0.0
- License:
- Abstract: The search for ferromagnetism in the Hubbard model has been a problem of outstanding interest since Nagaoka's original proposal in 1966. Recent advances in quantum simulation have today enabled the study of tunable doped Hubbard models in ultracold atomic systems. Employing large-scale density-matrix renormalization group calculations, we establish the existence of high-spin ground states of the Hubbard model on finite-sized triangular lattices, analyze the microscopic mechanisms behind their origin, and investigate the interplay between ferromagnetism and other competing orders, such as stripes. These results explain$\unicode{x2014}$and shed new light on$\unicode{x2014}$the intriguing observations of ferromagnetic correlations in recent optical-lattice experiments. Additionally, we examine a generalized variant of the Hubbard model, wherein any second electron on a single lattice site is weakly bound compared to the first one, and demonstrate how this modification can lead to enhanced ferromagnetism, at intermediate length scales, on the nonfrustrated square lattice as well.
Related papers
- Itinerant magnetism in Hubbard models with long-range interactions [0.0]
A wide variety of platforms, ranging from semiconductor quantum-dot arrays to mo'e materials, have recently emerged as powerful quantum simulators.
We investigate the effects of the Hubbard model which includes long-dimensional lattices.
For small electron dopings, we uncover a rich variety of magnetically ordered numerically states.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Amorphous quantum magnets in a two-dimensional Rydberg atom array [44.99833362998488]
We propose to explore amorphous quantum magnets with an analog quantum simulator.
We first present an algorithm to generate amorphous quantum magnets, suitable for Rydberg simulators of the Ising model.
We then use semiclassical approaches to get a preliminary insight of the physics of the model.
arXiv Detail & Related papers (2024-02-05T10:07:10Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Polaronic mechanism of Nagaoka ferromagnetism in Hubbard models [0.0]
Nagaoka-type ferromagnetism has recently enjoyed renewed attention with the advent of a variety of experimental platforms.
Here, we demonstrate a universal mechanism for Nagaoka ferromagnetism.
arXiv Detail & Related papers (2023-11-15T19:00:00Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator [0.14277663283573688]
Geometrical frustration in strongly correlated systems can give rise to a plethora of novel ordered states and intriguing magnetic phases.
We show how frustration reduces the range of magnetic correlations and drives a transition from a collinear N'eel antiferromagnet to a short-range correlated 120$circ$ spiral phase.
This work paves the way towards exploring possible chiral ordered or superconducting phases in triangular lattices and realizing t-t' square lattice Hubbard models.
arXiv Detail & Related papers (2022-12-28T18:01:40Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Efficient matrix-product-state preparation of highly entangled trial
states: Weak Mott insulators on the triangular lattice revisited [0.0]
We show that the simplest triangular lattice $J$-$K$ spin model with four-site ring exchange likely does not harbor a fully gapless U(1) spinon Fermi surface.
Our methodology paves the way to fully resolve other controversial problems in the fields of frustrated quantum magnetism and strongly correlated electrons.
arXiv Detail & Related papers (2020-09-25T20:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.