Unsupervised Domain Adaptation for Medical Image Segmentation via
Feature-space Density Matching
- URL: http://arxiv.org/abs/2305.05789v2
- Date: Thu, 6 Jul 2023 20:03:28 GMT
- Title: Unsupervised Domain Adaptation for Medical Image Segmentation via
Feature-space Density Matching
- Authors: Tushar Kataria, Beatrice Knudsen, and Shireen Elhabian
- Abstract summary: This paper presents an unsupervised domain adaptation approach for semantic segmentation.
We match the target data distribution to the source in the feature space, particularly when the number of target samples is limited.
We demonstrate the efficacy of our proposed approach on 2 datasets, multisite prostate MRI and histopathology images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is a critical step in automated image interpretation
and analysis where pixels are classified into one or more predefined
semantically meaningful classes. Deep learning approaches for semantic
segmentation rely on harnessing the power of annotated images to learn features
indicative of these semantic classes. Nonetheless, they often fail to
generalize when there is a significant domain (i.e., distributional) shift
between the training (i.e., source) data and the dataset(s) encountered when
deployed (i.e., target), necessitating manual annotations for the target data
to achieve acceptable performance. This is especially important in medical
imaging because different image modalities have significant intra- and
inter-site variations due to protocol and vendor variability. Current
techniques are sensitive to hyperparameter tuning and target dataset size. This
paper presents an unsupervised domain adaptation approach for semantic
segmentation that alleviates the need for annotating target data. Using kernel
density estimation, we match the target data distribution to the source in the
feature space, particularly when the number of target samples is limited (3% of
the target dataset size). We demonstrate the efficacy of our proposed approach
on 2 datasets, multisite prostate MRI and histopathology images.
Related papers
- Semantic Segmentation by Semantic Proportions [6.171990546748665]
We propose a novel approach for semantic segmentation, requiring the rough information of individual semantic class proportions.
This greatly simplifies the data annotation process and thus will significantly reduce the annotation time, cost and storage space.
arXiv Detail & Related papers (2023-05-24T22:51:52Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Self-supervised Pre-training for Semantic Segmentation in an Indoor
Scene [8.357801312689622]
We propose RegConsist, a method for self-supervised pre-training of a semantic segmentation model.
We use a variant of contrastive learning to train a DCNN model for predicting semantic segmentation from RGB views in the target environment.
The proposed method outperforms models pre-trained on ImageNet and achieves competitive performance when using models that are trained for exactly the same task but on a different dataset.
arXiv Detail & Related papers (2022-10-04T20:10:14Z) - Domain-invariant Prototypes for Semantic Segmentation [30.932130453313537]
We present an easy-to-train framework that learns domain-invariant prototypes for domain adaptive semantic segmentation.
Our method involves only one-stage training and does not need to be trained on large-scale un-annotated target images.
arXiv Detail & Related papers (2022-08-12T02:21:05Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
We present a framework for semi-adaptive and domain-supervised semantic segmentation.
It is enhanced by self-supervised monocular depth estimation trained only on unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset.
arXiv Detail & Related papers (2021-08-28T01:33:38Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
We propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adrial Regularization (InMARS)
Inspired by human perception which parses a scene into perceptual groups, our proposed approach first partitions an input image into meaningful regions (also known as superpixels)
Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes.
Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets.
arXiv Detail & Related papers (2021-07-01T18:36:27Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain.
We present a semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment.
We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.
arXiv Detail & Related papers (2021-05-11T13:21:25Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.