論文の概要: Address Matching Based On Hierarchical Information
- arxiv url: http://arxiv.org/abs/2305.05874v1
- Date: Wed, 10 May 2023 03:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 14:38:31.557442
- Title: Address Matching Based On Hierarchical Information
- Title(参考訳): 階層情報に基づくアドレスマッチング
- Authors: Chengxian Zhang, Jintao Tang, Ting Wang, Shasha Li
- Abstract要約: 本稿では,ディープラーニング手法における階層情報を活用する新しい手法を提案する。
実験の結果,提案手法は現在のアプローチを3.2%改善することがわかった。
- 参考スコア(独自算出の注目度): 7.860920215887625
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: There is evidence that address matching plays a crucial role in many areas
such as express delivery, online shopping and so on. Address has a hierarchical
structure, in contrast to unstructured texts, which can contribute valuable
information for address matching. Based on this idea, this paper proposes a
novel method to leverage the hierarchical information in deep learning method
that not only improves the ability of existing methods to handle irregular
address, but also can pay closer attention to the special part of address.
Experimental findings demonstrate that the proposed method improves the current
approach by 3.2% points.
- Abstract(参考訳): 急行配達やオンラインショッピングなど、多くの分野でアドレスマッチングが重要な役割を担っているという証拠がある。
addressは非構造化テキストとは対照的に階層構造を持ち、アドレスマッチングに有用な情報を提供する。
そこで本研究では,既存の不規則なアドレスを扱う手法の能力を向上させるだけでなく,アドレスの特定部分に注意を払うことが可能な,深層学習手法における階層情報を活用する新しい手法を提案する。
実験の結果,提案手法は現在のアプローチを3.2%改善することがわかった。
関連論文リスト
- AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization [57.34659640776723]
そこで我々は,より意味論的に問題を解決するために,AddressCLIPというエンドツーエンドのフレームワークを提案する。
われわれはピッツバーグとサンフランシスコに3つのデータセットを構築した。
論文 参考訳(メタデータ) (2024-07-11T03:18:53Z) - Improvement in Semantic Address Matching using Natural Language Processing [16.09672533759915]
アドレスマッチングは多くの企業にとって,特にデリバリや企業の取り出しにおいて重要なタスクです。
既存のソリューションでは文字列の類似性を使用し、距離アルゴリズムを編集して、アドレスデータベースから類似したアドレスを見つける。
本稿では,可能なアドレスのリストから特定のアドレスを検索できるセマンティックアドレスマッチング手法について論じる。
論文 参考訳(メタデータ) (2024-04-17T18:42:36Z) - Methods for Matching English Language Addresses [1.2930673139458417]
我々は、英語のアドレス対のマッチングとミスマッチを生成するためのフレームワークを形式化する。
アドレスマッチングを自動的に行うための様々な手法を評価する。
論文 参考訳(メタデータ) (2024-03-14T10:39:14Z) - Few-Shot Data-to-Text Generation via Unified Representation and
Multi-Source Learning [114.54944761345594]
本稿では,既存の手法の限界に対処する構造化データ・テキスト生成手法を提案する。
提案手法は,マルチタスクトレーニング,ゼロショット,少数ショットシナリオの性能向上を目的としている。
論文 参考訳(メタデータ) (2023-08-10T03:09:12Z) - Towards End-to-end Handwritten Document Recognition [0.0]
手書き文字認識は、その多くの応用のために過去数十年にわたって広く研究されてきた。
本稿では,文書全体の手書きテキスト認識をエンドツーエンドで行うことで,これらの課題に対処することを提案する。
RIMES 2011, IAM, READ 2016 データセットの段落レベルでの最先端結果に到達し, これらのデータセットのラインレベル状態よりも優れていた。
論文 参考訳(メタデータ) (2022-09-30T10:31:22Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
そこで本研究では,定位分類のモデルとして,原文から銀ラベルでデータを抽出し,微調整する手法を提案する。
また,様々な段階において微調整に用いるデータのノイズレベルが減少する3段階のトレーニングフレームワークを提案する。
NLPCC 2021共有タスクArgumentative Text Understanding for AI Debaterでは,26の競合チームの中で1位にランクインした。
論文 参考訳(メタデータ) (2022-04-27T04:24:35Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
本稿では,新たな視点で言語誘導ナビゲーションの問題に対処する。
ロボットが自然言語の指示を実行し、地図観測に基づいて目標位置へ移動できるようにする。
提案手法は特に長距離ナビゲーションの場合において顕著な性能向上をもたらす。
論文 参考訳(メタデータ) (2022-03-07T07:40:33Z) - Combining Deep Learning and Reasoning for Address Detection in
Unstructured Text Documents [0.0]
本研究では,非構造化文書からアドレスを検索・抽出する手法として,ディープラーニングと推論を組み合わせたハイブリッド手法を提案する。
スキャンした文書画像上のアドレス領域の境界を検出するために,視覚的深層学習モデルを用いる。
論文 参考訳(メタデータ) (2022-02-07T12:32:00Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - Evaluation of a Region Proposal Architecture for Multi-task Document
Layout Analysis [0.685316573653194]
Mask-RCNNアーキテクチャは、ベースライン検出と領域分割の問題に対処するために設計されている。
2つの手書きテキストデータセットと1つの手書き音楽データセットに関する実験結果を示す。
分析したアーキテクチャは有望な結果をもたらし、3つのデータセットすべてで最先端のテクニックよりも優れています。
論文 参考訳(メタデータ) (2021-06-22T14:07:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。