論文の概要: Few-Shot Data-to-Text Generation via Unified Representation and
Multi-Source Learning
- arxiv url: http://arxiv.org/abs/2308.05317v1
- Date: Thu, 10 Aug 2023 03:09:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 13:47:16.485984
- Title: Few-Shot Data-to-Text Generation via Unified Representation and
Multi-Source Learning
- Title(参考訳): 統一表現とマルチソース学習によるFew-Shotデータ・テキスト生成
- Authors: Alexander Hanbo Li, Mingyue Shang, Evangelia Spiliopoulou, Jie Ma,
Patrick Ng, Zhiguo Wang, Bonan Min, William Wang, Kathleen McKeown, Vittorio
Castelli, Dan Roth, Bing Xiang
- Abstract要約: 本稿では,既存の手法の限界に対処する構造化データ・テキスト生成手法を提案する。
提案手法は,マルチタスクトレーニング,ゼロショット,少数ショットシナリオの性能向上を目的としている。
- 参考スコア(独自算出の注目度): 114.54944761345594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach for structured data-to-text generation that
addresses the limitations of existing methods that primarily focus on specific
types of structured data. Our proposed method aims to improve performance in
multi-task training, zero-shot and few-shot scenarios by providing a unified
representation that can handle various forms of structured data such as tables,
knowledge graph triples, and meaning representations. We demonstrate that our
proposed approach can effectively adapt to new structured forms, and can
improve performance in comparison to current methods. For example, our method
resulted in a 66% improvement in zero-shot BLEU scores when transferring models
trained on table inputs to a knowledge graph dataset. Our proposed method is an
important step towards a more general data-to-text generation framework.
- Abstract(参考訳): 本稿では,構造化データに主眼を置く既存手法の制約に対処する構造化データ・テキスト生成手法を提案する。
提案手法は,表や知識グラフのトリプル,意味表現など,さまざまな構造化データを扱う統一表現を提供することで,マルチタスクトレーニングやゼロショット,少数ショットシナリオのパフォーマンス向上を目的とする。
提案手法は,新しい構造化形式に効果的に適用でき,現行手法と比較して性能を向上できることを示す。
例えば、テーブル入力でトレーニングされたモデルを知識グラフデータセットに転送する際に、ゼロショットbleuスコアが66%向上した。
提案手法は,より一般的なデータ・テキスト生成フレームワークに向けた重要なステップである。
関連論文リスト
- An Active Learning Framework for Inclusive Generation by Large Language Models [32.16984263644299]
大規模言語モデル(LLM)は、多様なサブ集団を表すテキストを生成する。
本稿では,知識蒸留により強化されたクラスタリングに基づくアクティブラーニングフレームワークを提案する。
2つの新しいデータセットをモデルトレーニングと組み合わせて構築し、ベースラインモデルよりも2%-10%の性能向上を示した。
論文 参考訳(メタデータ) (2024-10-17T15:09:35Z) - Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggetsはワンショット学習を使用して、広範なデータセットから高品質な命令データを選択する。
我々は,textscNuggets がキュレートした例の上位1%による命令チューニングが,データセット全体を用いた従来の手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:33:12Z) - Faithful Low-Resource Data-to-Text Generation through Cycle Training [14.375070014155817]
近年,構造化データからテキストを生成する手法が大幅に進歩している。
サイクルトレーニングでは、互いに逆転する2つのモデルを使用する。
サイクルトレーニングが完全に教師付きアプローチとほぼ同等のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-05-24T06:44:42Z) - Towards Table-to-Text Generation with Pretrained Language Model: A Table
Structure Understanding and Text Deliberating Approach [60.03002572791552]
本稿では,テーブル構造理解とテキスト検討手法,すなわちTASDを提案する。
具体的には,表構造を考慮したテキスト生成モデルを実現するために,三層多層アテンションネットワークを考案する。
われわれのアプローチは、様々な種類のテーブルに対して忠実で流動的な記述テキストを生成することができる。
論文 参考訳(メタデータ) (2023-01-05T14:03:26Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
テキスト生成の困難さによって決定される並べ替え順序でラベルのないデータを活用するために,カリキュラムベースの自己学習(CBST)を提案する。
提案手法は、微調整およびタスク適応型事前学習法より優れており、データ・テキスト・ジェネレーションのわずかな設定で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-06-06T16:11:58Z) - Data-to-text Generation with Variational Sequential Planning [74.3955521225497]
非言語的な入力からテキスト出力を生成することを目的としたデータ・ツー・テキスト生成の課題について考察する。
協調的かつ有意義な方法で高レベルの情報を整理する責任を負う計画要素を付加したニューラルモデルを提案する。
我々は、計画と生成のステップをインターリーブしながら、構造化された変動モデルで逐次、潜在計画を推測する。
論文 参考訳(メタデータ) (2022-02-28T13:17:59Z) - A Span Extraction Approach for Information Extraction on Visually-Rich
Documents [2.3131309703965135]
視覚豊かな文書(VRD)を事前学習する言語モデルの能力向上のための新しいアプローチを提案する。
まず、クエリベースの新しいIEモデルを導入し、一般的に使用されるシーケンスラベリングアプローチの代わりにスパン抽出の定式化を採用する。
また、文書内の意味的エンティティ間の関係をモデル化することに焦点を当てた新しいトレーニングタスクを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:50:04Z) - Iterative Data Programming for Expanding Text Classification Corpora [9.152045698511506]
実世界のテキスト分類タスクは、しばしば、取得するのに高価なラベル付きトレーニング例を必要とする。
機械教育の最近の進歩、特にデータプログラミングパラダイムは、トレーニングデータセットの迅速な作成を促進する。
近所の弱いモデルを生成することによってテキストデータセットを拡大するための,高速でシンプルなデータプログラミング手法を提案する。
論文 参考訳(メタデータ) (2020-02-04T17:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。