Quantum Fourier Transform for Image Processing
- URL: http://arxiv.org/abs/2305.05953v2
- Date: Wed, 16 Oct 2024 03:21:42 GMT
- Title: Quantum Fourier Transform for Image Processing
- Authors: Ze Yu Zhang, Weibo Gao,
- Abstract summary: We propose a quantum algorithm for processing information, such as one-dimensional time series and two-dimensional images, in the frequency domain.
The proposed techniques are implemented on the IBM Qiskit quantum simulator.
- Score: 3.4268116130770565
- License:
- Abstract: Quantum information processing and its subfield, quantum image processing, are rapidly growing fields as a result of advancements in the practicality of quantum mechanics. In this paper, we propose a quantum algorithm for processing information, such as one-dimensional time series and two-dimensional images, in the frequency domain. The information of interest is encoded into the magnitude of probability amplitude or the coefficient of each basis state. The oracle for filtering operates based on postselection results, and its explicit circuit design is presented. This oracle is versatile enough to perform all basic filtering, including high pass, low pass, band pass, band stop, and many other processing techniques. Finally, we present two novel schemes for transposing matrices in this paper. They use similar encoding rules but with deliberate choices in terms of selecting basis states. These schemes could potentially be useful for other quantum information processing tasks, such as edge detection. The proposed techniques are implemented on the IBM Qiskit quantum simulator. Some results are compared with traditional information processing results to verify their correctness and are presented in this paper.
Related papers
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Deep learning as a tool for quantum error reduction in quantum image
processing [0.0]
We report the successful use of a generative adversarial network trained for image-to-image translation, in conjunction with Phase Unraveling error reduction method, for reducing overall error in images encoded using LPIQE.
Despite the limited availability and quantum volume of quantum computers, quantum image representation is a widely researched area.
arXiv Detail & Related papers (2023-11-08T10:14:50Z) - Tensor Network Based Efficient Quantum Data Loading of Images [0.0]
We present a novel method for creating quantum states that approximately encode images as amplitudes.
We experimentally demonstrate our technique on 8 qubits of a trapped ion quantum computer for complex images of road scenes.
arXiv Detail & Related papers (2023-10-09T17:40:41Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Achieving quantum advantages for image filtering [0.3441021278275805]
We show that for images with efficient encoding and a lower bound on the signal-to-noise ratio, a quantum filtering algorithm can be constructed.
Our work provides insights into the types of images that can achieve a substantial quantum speedup.
arXiv Detail & Related papers (2023-06-12T17:20:30Z) - A hybrid quantum image edge detector for the NISQ era [62.997667081978825]
We propose a hybrid method for quantum edge detection based on the idea of a quantum artificial neuron.
Our method can be practically implemented on quantum computers, especially on those of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-03-22T22:02:09Z) - Improved FRQI on superconducting processors and its restrictions in the
NISQ era [62.997667081978825]
We study the feasibility of the Flexible Representation of Quantum Images (FRQI)
We also check experimentally what is the limit in the current noisy intermediate-scale quantum era.
We propose a method for simplifying the circuits needed for the FRQI.
arXiv Detail & Related papers (2021-10-29T10:42:43Z) - Advantages and Bottlenecks of Quantum Machine Learning for Remote
Sensing [63.69764116066747]
This concept paper aims to provide a brief outline of quantum computers, explore existing methods of quantum image classification techniques, and discuss the bottlenecks of performing these algorithms on currently available open source platforms.
Next steps include expanding the size of the quantum hidden layer and increasing the variety of output image options.
arXiv Detail & Related papers (2021-01-26T09:31:46Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.