論文の概要: Implications of Multi-Word Expressions on English to Bharti Braille
Machine Translation
- arxiv url: http://arxiv.org/abs/2305.06157v1
- Date: Fri, 5 May 2023 08:59:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-14 20:57:40.989451
- Title: Implications of Multi-Word Expressions on English to Bharti Braille
Machine Translation
- Title(参考訳): 英語とbharti braille機械翻訳における多語表現の意義
- Authors: Nisheeth Joshi, Pragya Katyayan
- Abstract要約: Bharti Braille 機械翻訳システムに英語を改良した。
我々は,言語知識を付加することで,ベースラインNMTモデルを改善する方法を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we have shown the improvement of English to Bharti Braille
machine translation system. We have shown how we can improve a baseline NMT
model by adding some linguistic knowledge to it. This was done for five
language pairs where English sentences were translated into five Indian
languages and then subsequently to corresponding Bharti Braille. This has been
demonstrated by adding a sub-module for translating multi-word expressions. The
approach shows promising results as across language pairs, we could see
improvement in the quality of NMT outputs. The least improvement was observed
in English-Nepali language pair with 22.08% and the most improvement was
observed in the English-Hindi language pair with 23.30%.
- Abstract(参考訳): 本稿では,Bharti Braille 機械翻訳システムの改良について述べる。
我々は,言語知識を付加することで,ベースラインNMTモデルを改善する方法を示した。
これは5つの言語ペアで行われ、英語の文は5つのインド語に翻訳され、その後対応するbharti brailleに翻訳された。
これは多語表現を翻訳するサブモジュールを追加することで証明されている。
このアプローチは言語ペア間で有望な結果を示し、NMT出力の品質が向上する可能性がある。
英語と英語のペアでは22.08%で、英語とヒンディー語のペアでは23.30%で最も改善が見られた。
関連論文リスト
- Machine Translation Advancements of Low-Resource Indian Languages by Transfer Learning [9.373815852241648]
低リソースのインド語に対する信頼性の高い機械翻訳システムを開発するために,我々は2つの異なる知識伝達戦略を採用している。
Assamese(as)とManipuri(mn)については、既存のIndicTrans2オープンソースモデルを微調整して、英語とこれらの言語間の双方向翻訳を可能にした。
Khasi (kh) と Mizo (mz) については,これら4つの言語ペアのバイリンガルデータと約8kwの英語-ベンガルバイリンガルデータを用いて,ベースラインとして多言語モデルを訓練した。
論文 参考訳(メタデータ) (2024-09-24T08:53:19Z) - CoSTA: Code-Switched Speech Translation using Aligned Speech-Text Interleaving [61.73180469072787]
インド語から英語のテキストへのコード変更音声の音声翻訳(ST)の問題に焦点をあてる。
本稿では、事前訓練された自動音声認識(ASR)と機械翻訳(MT)モジュールを足場として、新しいエンドツーエンドモデルアーキテクチャCOSTAを提案する。
COSTAは、多くの競合するカスケードおよびエンドツーエンドのマルチモーダルベースラインを3.5BLEUポイントまで上回っている。
論文 参考訳(メタデータ) (2024-06-16T16:10:51Z) - Hindi to English: Transformer-Based Neural Machine Translation [0.0]
我々は,インド語ヒンディー語から英語への翻訳のためにトランスフォーマーモデルを訓練し,機械翻訳(NMT)システムを開発した。
トレーニングデータを増強し、語彙を作成するために、バックトランスレーションを実装した。
これにより、IIT Bombay English-Hindi Corpusのテストセットで、最先端のBLEUスコア24.53を達成することができました。
論文 参考訳(メタデータ) (2023-09-23T00:00:09Z) - Crosslingual Generalization through Multitask Finetuning [80.8822603322471]
マルチタスク誘導ファインタニング(MTF)は、大きな言語モデルがゼロショット設定で新しいタスクに一般化するのに役立つことが示されている。
MTFを事前訓練された多言語BLOOMおよびmT5モデルファミリーに適用し、BLOOMZおよびmT0と呼ばれる微調整された変種を生成する。
英語のプロンプトを用いた英語タスクにおける多言語多言語モデルの微調整により、非英語言語へのタスク一般化が可能となる。
論文 参考訳(メタデータ) (2022-11-03T13:19:32Z) - Harnessing Cross-lingual Features to Improve Cognate Detection for
Low-resource Languages [50.82410844837726]
言語間単語埋め込みを用いた14言語間のコニャートの検出を実証する。
インドの12言語からなる挑戦的データセットを用いて,コニャート検出手法の評価を行った。
我々は,コグネート検出のためのFスコアで最大18%の改善点を観察した。
論文 参考訳(メタデータ) (2021-12-16T11:17:58Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - Unsupervised Transfer Learning in Multilingual Neural Machine
Translation with Cross-Lingual Word Embeddings [72.69253034282035]
我々は、言語独立多言語文表現を活用し、新しい言語に容易に一般化する。
複数のロマンス言語を含むベースシステムを用いてポルトガル語から盲目的に復号し、ポルトガル語では36.4 BLEU、ロシア語では12.8 BLEUのスコアを得た。
非反復的逆翻訳によるより実用的な適応アプローチを探求し、高品質の翻訳を生産するモデルの能力を活用します。
論文 参考訳(メタデータ) (2021-03-11T14:22:08Z) - Exploring Pair-Wise NMT for Indian Languages [35.17470908190963]
これらのモデルの性能は, フィルタした逆翻訳プロセスを通じて, バックトランスレーションを用いることで大幅に向上できることを示す。
本稿では,本手法がベースラインよりも多言語モデルの性能を著しく向上できることを示す。
論文 参考訳(メタデータ) (2020-12-10T16:22:36Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
unsupervised neural machine translation (UNMT) は、最近、いくつかの言語対に対して顕著な結果を得た。
UNMTは単一の言語ペア間でのみ翻訳することができ、同時に複数の言語ペアに対して翻訳結果を生成することはできない。
本稿では,1つのエンコーダと1つのデコーダを用いて13言語間を翻訳する簡単な手法を実証的に紹介する。
論文 参考訳(メタデータ) (2020-04-21T17:26:16Z) - Neural Machine Translation for Low-Resourced Indian Languages [4.726777092009554]
機械翻訳は、人間の関与なしにテキストを別の言語に変換する効果的な手法である。
本稿では,NMTを英語・タミル語・英語・マラヤラム語という,最も形態学的に豊かな2つの言語に適用した。
我々は,BPE(Byte-Pair-Encoded)とMultiBPE(MultiBPE)を併用したマルチヘッド自己アテンション(Multihead self-attention)を用いた新しいNMTモデルを提案し,効率的な翻訳システムを開発した。
論文 参考訳(メタデータ) (2020-04-19T17:29:34Z) - Neural Machine Translation System of Indic Languages -- An Attention
based Approach [0.5139874302398955]
インドでは、ほとんどの言語は先祖の言語であるサンスクリットに由来する。
本稿では,ヒンディー語やグジャラート語などのインド語を効率的に翻訳できるニューラルネットワーク翻訳システム(NMT)を提案する。
論文 参考訳(メタデータ) (2020-02-02T07:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。