論文の概要: Exploring Pair-Wise NMT for Indian Languages
- arxiv url: http://arxiv.org/abs/2012.05786v1
- Date: Thu, 10 Dec 2020 16:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 12:42:37.992958
- Title: Exploring Pair-Wise NMT for Indian Languages
- Title(参考訳): インド語のためのペアワイズNMTの探索
- Authors: Kartheek Akella, Sai Himal Allu, Sridhar Suresh Ragupathi, Aman
Singhal, Zeeshan Khan, Vinay P. Namboodiri, C V Jawahar
- Abstract要約: これらのモデルの性能は, フィルタした逆翻訳プロセスを通じて, バックトランスレーションを用いることで大幅に向上できることを示す。
本稿では,本手法がベースラインよりも多言語モデルの性能を著しく向上できることを示す。
- 参考スコア(独自算出の注目度): 35.17470908190963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the task of improving pair-wise machine translation
for specific low resource Indian languages. Multilingual NMT models have
demonstrated a reasonable amount of effectiveness on resource-poor languages.
In this work, we show that the performance of these models can be significantly
improved upon by using back-translation through a filtered back-translation
process and subsequent fine-tuning on the limited pair-wise language corpora.
The analysis in this paper suggests that this method can significantly improve
a multilingual model's performance over its baseline, yielding state-of-the-art
results for various Indian languages.
- Abstract(参考訳): 本稿では、特定の低資源インド語に対するペアワイズ機械翻訳の改善という課題に対処する。
多言語NMTモデルは資源不足言語に対して妥当な有効性を示した。
そこで本研究では,フィルタした逆翻訳プロセスと,制限されたペアワイド言語コーパスの微調整により,これらのモデルの性能を著しく向上できることを示す。
本稿では,本手法が多言語モデルのベースライン上での性能を著しく向上し,インド諸言語における最新の結果が得られることを示す。
関連論文リスト
- Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Improving Domain-Specific Retrieval by NLI Fine-Tuning [64.79760042717822]
本稿では、自然言語推論(NLI)データの微調整の可能性を調べ、情報検索とランキングを改善する。
コントラスト損失とNLIデータを利用した教師あり手法により細調整された単言語文エンコーダと多言語文エンコーダを併用する。
この結果から,NLIの微調整によりタスクおよび言語間のモデルの性能が向上し,単言語モデルと多言語モデルが改良される可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-06T12:40:58Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
負の干渉を軽減するために,HLT-MT(High-Resource Language-specific Training)を用いた多言語翻訳モデルを提案する。
具体的には、まずマルチ言語モデルを高リソースペアでトレーニングし、デコーダの上部にある言語固有のモジュールを選択する。
HLT-MTは、高リソース言語から低リソース言語への知識伝達のために、利用可能なすべてのコーパスでさらに訓練されている。
論文 参考訳(メタデータ) (2022-07-11T14:33:13Z) - Improving Neural Machine Translation of Indigenous Languages with
Multilingual Transfer Learning [7.893831644671974]
本稿では,バイリンガルおよびマルチリンガル事前訓練されたMTモデルを用いて,スペイン語から10の南米先住民言語に翻訳する手法について述べる。
私たちのモデルは、新しいSOTAを考慮に入れている10の言語ペアのうち5つに設定し、これらの5つのペアのうちの1つのパフォーマンスを倍増させました。
論文 参考訳(メタデータ) (2022-05-14T07:30:03Z) - Beyond Static Models and Test Sets: Benchmarking the Potential of
Pre-trained Models Across Tasks and Languages [15.373725507698591]
本稿は,多言語評価における既存の実践を信頼できないものにし,言語環境全体にわたるMMLMの性能の全体像を提示していないことを論じる。
我々は,NLPタスクのパフォーマンス予測における最近の研究が,多言語NLPにおけるベンチマークの修正における潜在的な解決策となることを示唆する。
実験データと4つの異なる多言語データセットのケーススタディを比較し、これらの手法が翻訳に基づくアプローチとよく一致している性能の信頼性を推定できることを示した。
論文 参考訳(メタデータ) (2022-05-12T20:42:48Z) - Multilingual Neural Machine Translation:Can Linguistic Hierarchies Help? [29.01386302441015]
MNMT(Multilingual Neural Machine Translation)は、複数の言語間の翻訳をサポートする単一のNMTモデルを訓練する。
MNMTモデルの性能は、様々な言語から知識を伝達することで、負の転送によって翻訳性能が低下するので、訓練で使用される言語の種類に大きく依存する。
本稿では,MNMTにおける階層的知識蒸留(HKD)手法を提案する。
論文 参考訳(メタデータ) (2021-10-15T02:31:48Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
本稿では,bitextデータ上での翻訳タスクと,モノリンガルデータ上での2つの認知タスクを併用してモデルを学習するマルチタスク学習フレームワークを提案する。
提案手法は,高リソース言語と低リソース言語の両方の翻訳品質を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2020-10-06T06:54:12Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
ニューラルネットワーク翻訳(NMT)の多言語モデルは理論的には魅力的であるが、しばしばバイリンガルモデルに劣る。
我々は,多言語NMTが言語ペアをサポートするためにより強力なモデリング能力を必要とすることを論じる。
未知のトレーニング言語ペアの翻訳を強制するために,ランダムなオンライン翻訳を提案する。
論文 参考訳(メタデータ) (2020-04-24T17:21:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。