ChatGPT as a Text Simplification Tool to Remove Bias
- URL: http://arxiv.org/abs/2305.06166v2
- Date: Thu, 1 Jun 2023 09:45:30 GMT
- Title: ChatGPT as a Text Simplification Tool to Remove Bias
- Authors: Charmaine Barker and Dimitar Kazakov
- Abstract summary: The presence of specific linguistic signals particular to a certain sub-group can be picked up by language models during training.
We explore a potential technique for bias mitigation in the form of simplification of text.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The presence of specific linguistic signals particular to a certain sub-group
of people can be picked up by language models during training. If the model
begins to associate specific language with a distinct group, any decisions made
based upon this language would hold a strong correlation to a decision based
upon their protected characteristic, leading to possible discrimination. We
explore a potential technique for bias mitigation in the form of simplification
of text. The driving force of this idea is that simplifying text should
standardise language between different sub-groups to one way of speaking while
keeping the same meaning. The experiment shows promising results as the
classifier accuracy for predicting the sensitive attribute drops by up to 17%
for the simplified data.
Related papers
- Reliable Detection and Quantification of Selective Forces in Language
Change [3.55026004901472]
We apply a recently-introduced method to corpus data to quantify the strength of selection in specific instances of historical language change.
We show that this method is more reliable and interpretable than similar methods that have previously been applied.
arXiv Detail & Related papers (2023-05-25T10:20:15Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
We propose a brand-new prefix-tuning method, Counterfactual Contrastive Prefix-tuning (CCPrefix) for many-class classification.
Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbalizers in many-class classification.
arXiv Detail & Related papers (2022-11-11T03:45:59Z) - Natural Language Inference Prompts for Zero-shot Emotion Classification
in Text across Corpora [11.986676998327864]
We show that the choice of a particular prompt formulation needs to fit to the corpus.
We show that this challenge can be tackled with combinations of multiple prompts.
arXiv Detail & Related papers (2022-09-14T15:07:36Z) - Challenges in Measuring Bias via Open-Ended Language Generation [1.5552869983952944]
We analyze how specific choices of prompt sets, metrics, automatic tools and sampling strategies affect bias results.
We provide recommendations for reporting biases in open-ended language generation.
arXiv Detail & Related papers (2022-05-23T19:57:15Z) - Polling Latent Opinions: A Method for Computational Sociolinguistics
Using Transformer Language Models [4.874780144224057]
We use the capacity for memorization and extrapolation of Transformer Language Models to learn the linguistic behaviors of a subgroup within larger corpora of Yelp reviews.
We show that even in cases where a specific keyphrase is limited or not present at all in the training corpora, the GPT is able to accurately generate large volumes of text that have the correct sentiment.
arXiv Detail & Related papers (2022-04-15T14:33:58Z) - Typical Decoding for Natural Language Generation [76.69397802617064]
We study why high-probability texts can be dull or repetitive.
We show that typical sampling offers competitive performance in terms of quality.
arXiv Detail & Related papers (2022-02-01T18:58:45Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.