ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability
- URL: http://arxiv.org/abs/2502.11336v1
- Date: Mon, 17 Feb 2025 01:15:07 GMT
- Title: ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability
- Authors: Ryuto Koike, Masahiro Kaneko, Ayana Niwa, Preslav Nakov, Naoaki Okazaki,
- Abstract summary: Detecting texts generated by Large Language Models (LLMs) could cause grave mistakes due to incorrect decisions.<n>We introduce ExaGPT, an interpretable detection approach grounded in the human decision-making process.<n>We show that ExaGPT massively outperforms prior powerful detectors by up to +40.9 points of accuracy at a false positive rate of 1%.
- Score: 62.285407189502216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting texts generated by Large Language Models (LLMs) could cause grave mistakes due to incorrect decisions, such as undermining student's academic dignity. LLM text detection thus needs to ensure the interpretability of the decision, which can help users judge how reliably correct its prediction is. When humans verify whether a text is human-written or LLM-generated, they intuitively investigate with which of them it shares more similar spans. However, existing interpretable detectors are not aligned with the human decision-making process and fail to offer evidence that users easily understand. To bridge this gap, we introduce ExaGPT, an interpretable detection approach grounded in the human decision-making process for verifying the origin of a text. ExaGPT identifies a text by checking whether it shares more similar spans with human-written vs. with LLM-generated texts from a datastore. This approach can provide similar span examples that contribute to the decision for each span in the text as evidence. Our human evaluation demonstrates that providing similar span examples contributes more effectively to judging the correctness of the decision than existing interpretable methods. Moreover, extensive experiments in four domains and three generators show that ExaGPT massively outperforms prior powerful detectors by up to +40.9 points of accuracy at a false positive rate of 1%.
Related papers
- TempTest: Local Normalization Distortion and the Detection of Machine-generated Text [0.0]
We introduce a method for detecting machine-generated text that is entirely of the generating language model.
This is achieved by targeting a defect in the way that decoding strategies, such as temperature or top-k sampling, normalize conditional probability measures.
We evaluate our detector in the white and black box settings across various language models, datasets, and passage lengths.
arXiv Detail & Related papers (2025-03-26T10:56:59Z) - IPAD: Inverse Prompt for AI Detection -- A Robust and Explainable LLM-Generated Text Detector [11.112793289424886]
Large Language Models (LLMs) have attained human-level fluency in text generation, which complicates the distinguishing between human-written and LLM-generated texts.
Existing detectors exhibit poor robustness on out-of-distribution data and attacked data, which is critical for real-world scenarios.
We propose IPAD (Inverse Prompt for AI Detection), a novel framework consisting of a Prompt that identifies predicted prompts that could have generated the input text, and a Distinguisher that examines how well the input texts align with the predicted prompts.
arXiv Detail & Related papers (2025-02-21T19:41:32Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
We propose a simple but effective black-box zero-shot detection approach.
It is predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts.
Our method achieves an average AUROC of 98.7% and shows strong robustness against paraphrase and adversarial perturbation attacks.
arXiv Detail & Related papers (2024-05-07T12:57:01Z) - DetectGPT-SC: Improving Detection of Text Generated by Large Language
Models through Self-Consistency with Masked Predictions [13.077729125193434]
Existing detectors are built on the assumption that there is a distribution gap between human-generated and AI-generated texts.
We find that large language models such as ChatGPT exhibit strong self-consistency in text generation and continuation.
We propose a new method for AI-generated texts detection based on self-consistency with masked predictions.
arXiv Detail & Related papers (2023-10-23T01:23:10Z) - GPT-who: An Information Density-based Machine-Generated Text Detector [6.111161457447324]
We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector.
This detector employs UID-based features to model the unique statistical signature of each Large Language Models (LLMs)-generated and human-generated texts.
We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible.
arXiv Detail & Related papers (2023-10-09T23:06:05Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOX is a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output.
Experiments show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points F1-score.
The detector shows a state-of-the-art detection performance: up to 96.9 points F1-score, beating existing detectors on non-attacked texts.
arXiv Detail & Related papers (2023-07-21T17:40:47Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
Large Language Models (LLMs) perform impressively well in various applications.<n>The potential for misuse of these models in activities such as plagiarism, generating fake news, and spamming has raised concern about their responsible use.<n>We stress-test the robustness of these AI text detectors in the presence of an attacker.
arXiv Detail & Related papers (2023-03-17T17:53:19Z) - More Than Words: Towards Better Quality Interpretations of Text
Classifiers [16.66535643383862]
We show that token-based interpretability, while being a convenient first choice given the input interfaces of the ML models, is not the most effective one in all situations.
We show that higher-level feature attributions offer several advantages: 1) they are more robust as measured by the randomization tests, 2) they lead to lower variability when using approximation-based methods like SHAP, and 3) they are more intelligible to humans in situations where the linguistic coherence resides at a higher level.
arXiv Detail & Related papers (2021-12-23T10:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.