Dynamical bulk boundary correspondence and dynamical quantum phase
transitions in higher order topological insulators
- URL: http://arxiv.org/abs/2305.06241v1
- Date: Wed, 10 May 2023 15:21:55 GMT
- Title: Dynamical bulk boundary correspondence and dynamical quantum phase
transitions in higher order topological insulators
- Authors: T. Mas{\l}owski and N. Sedlmayr
- Abstract summary: Dynamical quantum phase transitions occur in quantum systems when non-analyticities occur at critical times in the return rate.
We consider a minimal model which encompasses all possible forms of higher order topology in two dimensional topological band structures.
We find that DQPTs can still occur, and can occur for quenches which cross both bulk and boundary gap closings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical quantum phase transitions occur in dynamically evolving quantum
systems when non-analyticities occur at critical times in the return rate, a
dynamical analogue of the free energy. This extension of the concept of phase
transitions can be brought into contact with another, namely that of
topological phase transitions in which the phase transition is marked by a
change in a topological invariant. Following a quantum quench dynamical quantum
phase transitions can happen in topological matter, a fact which has already
been explored in one dimensional topological insulators and in two dimensional
Chern insulators. Additionally in one dimensional systems a dynamical bulk
boundary correspondence has been seen, related to the periodic appearance of
zero modes of the Loschmidt echo itself. Here we extend both of these concepts
to two dimensional higher order topological matter, in which the topologically
protected boundary modes are corner modes. We consider a minimal model which
encompasses all possible forms of higher order topology in two dimensional
topological band structures. We find that DQPTs can still occur, and can occur
for quenches which cross both bulk and boundary gap closings. Furthermore a
dynamical bulk boundary correspondence is also found, which takes a different
form to that in one dimension.
Related papers
- Complex dynamics approach to dynamical quantum phase transitions: the
Potts model [0.0]
This paper introduces complex dynamics methods to study dynamical quantum phase transitions in the one- and two-dimensional quantum 3-state Potts model.
We show that special boundary conditions can alter the nature of the transitions, and verify the claim for the one-dimensional system by transfer matrix calculations.
Our approach can be extended to multi-variable problems, higher dimensions, and approximate RG transformations expressed as rational functions.
arXiv Detail & Related papers (2023-08-28T18:26:41Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Predicting Topological Quantum Phase Transition via Multipartite
Entanglement from Dynamics [0.0]
An exactly solvable Kitaev model in a two-dimensional square lattice exhibits a topological quantum phase transition.
We show that features of the dynamical state, such as Loschmidt echo, time-averaged multipartite entanglement, can determine whether the initial state belongs to the topological phase or not.
arXiv Detail & Related papers (2022-12-26T18:42:05Z) - Topological transitions of the generalized Pancharatnam-Berry phase [55.41644538483948]
We show that geometric phases can be induced by a sequence of generalized measurements implemented on a single qubit.
We demonstrate and study this transition experimentally employing an optical platform.
Our protocol can be interpreted in terms of environment-induced geometric phases.
arXiv Detail & Related papers (2022-11-15T21:31:29Z) - Entanglement and precession in two-dimensional dynamical quantum phase
transitions [0.0]
We extend and investigate the notion of p- and eDQPTs in two-dimensional systems by considering semi-infinite ladders of varying width.
For square lattices, we find that pDQPTs and eDQPTs persist and are characterized by similar phenomenology as in 1D.
We also demonstrate that lattices with odd number of nearest neighbors give rise to phenomenologies beyond the one-dimensional classification.
arXiv Detail & Related papers (2021-12-21T14:57:10Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Controllable simulation of topological phases and edge states with
quantum walk [0.0]
We show that one-dimensional quantum walk with step-dependent coin simulates all types of topological phases in BDI family.
We also show that step-dependent coins provide the number of steps as a controlling factor over the simulations.
arXiv Detail & Related papers (2020-04-07T11:49:54Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.