Optimizing Drug Design by Merging Generative AI With Active Learning
Frameworks
- URL: http://arxiv.org/abs/2305.06334v1
- Date: Thu, 4 May 2023 13:25:14 GMT
- Title: Optimizing Drug Design by Merging Generative AI With Active Learning
Frameworks
- Authors: Isaac Filella-Merce, Alexis Molina, Marek Orzechowski, Luc\'ia D\'iaz,
Yang Ming Zhu, Julia Vilalta Mor, Laura Malo, Ajay S Yekkirala, Soumya Ray,
Victor Guallar
- Abstract summary: We have developed a Generative AI (GM) workflow based on a variational autoencoder and active learning steps.
The designed GM workflow iteratively learns from molecular metrics, including drug likeliness, synthesizability, similarity, and docking scores.
The proportion of high-affinity molecules inferred by our GM workflow was significantly greater than that in the training data.
- Score: 2.6062146828550903
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional drug discovery programs are being transformed by the advent of
machine learning methods. Among these, Generative AI methods (GM) have gained
attention due to their ability to design new molecules and enhance specific
properties of existing ones. However, current GM methods have limitations, such
as low affinity towards the target, unknown ADME/PK properties, or the lack of
synthetic tractability. To improve the applicability domain of GM methods, we
have developed a workflow based on a variational autoencoder coupled with
active learning steps. The designed GM workflow iteratively learns from
molecular metrics, including drug likeliness, synthesizability, similarity, and
docking scores. In addition, we also included a hierarchical set of criteria
based on advanced molecular modeling simulations during a final selection step.
We tested our GM workflow on two model systems, CDK2 and KRAS. In both cases,
our model generated chemically viable molecules with a high predicted affinity
toward the targets. Particularly, the proportion of high-affinity molecules
inferred by our GM workflow was significantly greater than that in the training
data. Notably, we also uncovered novel scaffolds significantly dissimilar to
those known for each target. These results highlight the potential of our GM
workflow to explore novel chemical space for specific targets, thereby opening
up new possibilities for drug discovery endeavors.
Related papers
- Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - De novo Drug Design using Reinforcement Learning with Multiple GPT
Agents [16.508471997999496]
MolRL-MGPT is a reinforcement learning algorithm with multiple GPT agents for drug molecular generation.
Our algorithm has shown promising results on the GuacaMol benchmark and exhibits efficacy in designing inhibitors against SARS-CoV-2 protein targets.
arXiv Detail & Related papers (2023-12-21T13:24:03Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - LIMO: Latent Inceptionism for Targeted Molecule Generation [14.391216237573369]
We present Latent Inceptionism on Molecules (LIMO), which significantly accelerates molecule generation with an inceptionism-like technique.
Comprehensive experiments show that LIMO performs competitively on benchmark tasks.
One of our generated drug-like compounds has a predicted $K_D$ of $6 cdot 10-14$ M against the human estrogen receptor.
arXiv Detail & Related papers (2022-06-17T21:05:58Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Artificial Intelligence based Autonomous Molecular Design for Medical
Therapeutic: A Perspective [9.371378627575883]
Domain-aware machine learning (ML) models have been increasingly adopted for accelerating small molecule therapeutic design.
We present the most recent breakthrough achieved by each of the components, and how such autonomous AI and ML workflow can be realized.
arXiv Detail & Related papers (2021-02-10T00:43:46Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z) - Scaffold-constrained molecular generation [0.0]
We build on the well-known SMILES-based Recurrent Neural Network (RNN) generative model, with a modified sampling procedure to achieve scaffold-constrained generation.
We showcase the method's ability to perform scaffold-constrained generation on various tasks.
arXiv Detail & Related papers (2020-09-15T15:41:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.