Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis
- URL: http://arxiv.org/abs/2311.10776v6
- Date: Thu, 17 Apr 2025 22:42:04 GMT
- Title: Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis
- Authors: Kexin Chen, Jiamin Lu, Junyou Li, Xiaoran Yang, Yuyang Du, Kunyi Wang, Qiannuan Shi, Jiahui Yu, Lanqing Li, Jiezhong Qiu, Jianzhang Pan, Yi Huang, Qun Fang, Pheng Ann Heng, Guangyong Chen,
- Abstract summary: Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
- Score: 55.30328162764292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent AI research plots a promising future of automatic chemical reactions within the chemistry society. This study proposes Chemist-X, a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis with retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions. To begin with, as an emulation on how chemical experts solve the RCO task, Chemist-X utilizes a novel RAG scheme to interrogate available molecular and literature databases to narrow the searching space for later processing. The agent then leverages a computer-aided design (CAD) tool we have developed through a large language model (LLM) supervised programming interface. With updated chemical knowledge obtained via RAG, as well as the ability in using CAD tools, our agent significantly outperforms conventional RCO AIs confined to the fixed knowledge within its training data. Finally, Chemist-X interacts with the physical world through an automated robotic system, which can validate the suggested chemical reaction condition without human interventions. The control of the robotic system was achieved with a novel algorithm we have developed for the equipment, which relies on LLMs for reliable script generation. Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
Related papers
- Accelerating drug discovery with Artificial: a whole-lab orchestration and scheduling system for self-driving labs [0.0]
Self-driving labs are transforming drug discovery by enabling automated, AI-guided experimentation.
But they face challenges in orchestrating complex, integrating diverse instruments and AI models, and managing data efficiently.
Artificial addresses these issues with a comprehensive orchestration and scheduling system.
It unifies lab operations, automates, and integrates AI-driven decision-making.
arXiv Detail & Related papers (2025-04-01T17:22:50Z) - ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning [64.2106664137118]
ChemAgent is a novel framework designed to improve the performance of large language models (LLMs)
It is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries.
When presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory.
arXiv Detail & Related papers (2025-01-11T17:10:30Z) - Autonomous Microscopy Experiments through Large Language Model Agents [4.241267255764773]
Large language models (LLMs) have accelerated the development of self-driving laboratories (SDLs) for materials research.
Here, we introduce AILA (Artificially Intelligent Lab Assistant), a framework that automates atomic force microscopy (AFM) through LLM-driven agents.
Our systematic assessment shows that state-of-the-art language models struggle even with basic tasks such as documentation retrieval.
arXiv Detail & Related papers (2024-12-18T09:35:28Z) - Validation of the Scientific Literature via Chemputation Augmented by Large Language Models [0.0]
Chemputation is the process of programming chemical robots to do experiments using a universal symbolic language, but the literature can be error prone and hard to read due to ambiguities.
Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, including natural language processing, robotic control, and more recently, chemistry.
We introduce an LLM-based chemical research agent workflow designed for the automatic validation of synthetic literature procedures.
arXiv Detail & Related papers (2024-10-08T21:31:42Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
arXiv Detail & Related papers (2024-07-21T12:27:26Z) - A Review of Large Language Models and Autonomous Agents in Chemistry [0.7184549921674758]
Large language models (LLMs) have emerged as powerful tools in chemistry.
This review highlights LLM capabilities in chemistry and their potential to accelerate scientific discovery through automation.
As agents are an emerging topic, we extend the scope of our review of agents beyond chemistry.
arXiv Detail & Related papers (2024-06-26T17:33:21Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision [27.850325653751078]
structured chemical reaction information plays a vital role for chemists engaged in laboratory work and advanced endeavors such as computer-aided drug design.
Despite the importance of extracting structured reactions from scientific literature, data annotation for this purpose is cost-prohibitive due to the significant labor required from domain experts.
We propose ReactIE, which combines two weakly supervised approaches for pre-training. Our method utilizes frequent patterns within the text as linguistic cues to identify specific characteristics of chemical reactions.
arXiv Detail & Related papers (2023-07-04T02:52:30Z) - ChemCrow: Augmenting large-language models with chemistry tools [0.9195187117013247]
Large-language models (LLMs) have shown strong performance in tasks across domains, but struggle with chemistry-related problems.
In this study, we introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery, and materials design.
Our agent autonomously planned and executed the syntheses of an insect repellent, three organocatalysts, and guided the discovery of a novel chromophore.
arXiv Detail & Related papers (2023-04-11T17:41:13Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.