論文の概要: Accelerating Batch Active Learning Using Continual Learning Techniques
- arxiv url: http://arxiv.org/abs/2305.06408v1
- Date: Wed, 10 May 2023 18:34:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 16:54:01.402095
- Title: Accelerating Batch Active Learning Using Continual Learning Techniques
- Title(参考訳): 連続学習技術を用いたバッチアクティブ学習の高速化
- Authors: Arnav Das, Gantavya Bhatt, Megh Bhalerao, Vianne Gao, Rui Yang, Jeff
Bilmes
- Abstract要約: Active Learning(AL)の大きな問題は、クエリラウンド毎にモデルがスクラッチから再トレーニングされるため、トレーニングコストが高いことだ。
我々は、事前にラベル付けされたセットに対してさらなるトレーニングをバイアスすることで、この問題を回避する新しいテクニックのクラスを開発する。
自然言語、ビジョン、医用画像、計算生物学など、さまざまなデータ領域で実験を行います。
- 参考スコア(独自算出の注目度): 5.156265404755048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major problem with Active Learning (AL) is high training costs since models
are typically retrained from scratch after every query round. We start by
demonstrating that standard AL on neural networks with warm starting fails,
both to accelerate training and to avoid catastrophic forgetting when using
fine-tuning over AL query rounds. We then develop a new class of techniques,
circumventing this problem, by biasing further training towards previously
labeled sets. We accomplish this by employing existing, and developing novel,
replay-based Continual Learning (CL) algorithms that are effective at quickly
learning the new without forgetting the old, especially when data comes from an
evolving distribution. We call this paradigm Continual Active Learning (CAL).
We show CAL achieves significant speedups using a plethora of replay schemes
that use model distillation and that select diverse, uncertain points from the
history. We conduct experiments across many data domains, including natural
language, vision, medical imaging, and computational biology, each with
different neural architectures and dataset sizes. CAL consistently provides a
3x reduction in training time, while retaining performance.
- Abstract(参考訳): Active Learning(AL)の大きな問題は、クエリラウンド毎にモデルがスクラッチから再トレーニングされるため、トレーニングコストが高いことだ。
まず、ウォームスタート障害のあるニューラルネットワークの標準alをデモし、トレーニングを加速し、alクエリラウンドを微調整するときに壊滅的な忘れるのを避けることから始める。
次に,従来ラベル付き集合に対するさらなるトレーニングをバイアスすることで,この問題を回避する新しい手法を開発した。
我々は,新旧の学習に有効であり,特に進化する分布から来るデータに対して,新旧の学習に有効な,既存のリプレイ型連続学習(cl)アルゴリズムを採用し,これを実現している。
このパラダイムを連続アクティブ学習(cal)と呼びます。
CALは, モデル蒸留を多用し, 歴史から多種多様な不確実点を選択するリプレイ方式を用いて, 大幅な高速化を実現していることを示す。
自然言語、ビジョン、医用画像、計算生物学など、さまざまなデータ領域に対して、それぞれ異なるニューラルネットワークアーキテクチャとデータセットサイズで実験を行います。
CALは、パフォーマンスを維持しながら、トレーニング時間の3倍の短縮を提供する。
関連論文リスト
- Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - How Efficient Are Today's Continual Learning Algorithms? [31.120016345185217]
監視された継続学習では、ラベル付きデータのストリームからディープニューラルネットワーク(DNN)を更新する。
継続的学習の背景にある大きな動機の1つは、時間とともに成長するにつれてトレーニングデータセットをスクラッチからリトレーニングするのではなく、ネットワークを新しい情報で効率的に更新できることだ。
本稿では,近年のインクリメンタルなクラス学習手法について検討し,計算,メモリ,記憶の面では非常に非効率であることを示す。
論文 参考訳(メタデータ) (2023-03-29T18:52:10Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
我々は、ディープニューラルネットワーク(DNN)のためのオンライン学習パラダイムであるLearning, Unlearn, and Relearn(LURE)を紹介する。
LUREは、モデルの望ましくない情報を選択的に忘れる未学習フェーズと、一般化可能な特徴の学習を強調する再学習フェーズとを交換する。
トレーニングパラダイムは、分類と少数ショット設定の両方において、データセット間で一貫したパフォーマンス向上を提供します。
論文 参考訳(メタデータ) (2023-03-18T16:45:54Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
PIVOTは、画像領域から事前学習したモデルにおける広範な知識を活用する新しい手法である。
実験の結果,PIVOTは20タスクのアクティビティネット設定において,最先端の手法を27%向上することがわかった。
論文 参考訳(メタデータ) (2022-12-09T13:22:27Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
本稿では視覚バックボーン(例えば視覚変換器)の効率的なトレーニングのための新しいカリキュラム学習手法を提案する。
オフザシェルフ方式として、様々な人気モデルのウォールタイムトレーニングコストを、精度を犠牲にすることなく、ImageNet-1K/22Kで1.5倍に削減する。
論文 参考訳(メタデータ) (2022-11-17T17:38:55Z) - Learning Rate Curriculum [75.98230528486401]
ラーニングレートカリキュラム(LeRaC)と呼ばれる新しいカリキュラム学習手法を提案する。
LeRaCは、ニューラルネットワークの各レイヤ毎に異なる学習率を使用して、最初のトレーニングエポックの間、データに依存しないカリキュラムを作成する。
Smoothing(CBS)によるCurriculum(Curriculum)との比較を行った。
論文 参考訳(メタデータ) (2022-05-18T18:57:36Z) - Explain to Not Forget: Defending Against Catastrophic Forgetting with
XAI [10.374979214803805]
破滅的な忘れは、ニューラルネットワークが新しい情報を与えられたときの過去の知識を完全に忘れてしまう現象を記述している。
我々は、ニューラルネットワークが新しいデータをトレーニングする際に、以前のタスクで既に学んだ情報を保持するために、レイヤーワイズ関連伝播を利用する、トレーニングと呼ばれる新しいトレーニングアルゴリズムを提案する。
我々の手法は、ニューラルネットワーク内の古いタスクの知識をうまく保持するだけでなく、他の最先端のソリューションよりもリソース効率が良い。
論文 参考訳(メタデータ) (2022-05-04T08:00:49Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
ディープラーニングモデルは、インクリメンタルな学習環境で訓練されたときに壊滅的な忘れに苦しむ。
タスクインクリメンタル学習問題に対処するための新しいアプローチを提案する。これは、インクリメンタルに到着する新しいタスクに関するモデルをトレーニングすることを含む。
私たちのアプローチは、ゼロショットと非ゼロショットタスクインクリメンタルラーニング設定の両方で使用できます。
論文 参考訳(メタデータ) (2021-03-30T18:11:30Z) - Generative Feature Replay with Orthogonal Weight Modification for
Continual Learning [20.8966035274874]
生成的再生は、破滅的な忘れを和らげるために、以前のタスクの擬似データを生成し再生する有望な戦略である。
生成モデルを用いて垂直層の特徴を再現することを提案する; 2) 自己監督型補助タスクを活用して特徴の安定性をさらに向上する。
いくつかのデータセットにおける実験結果から,我々の手法は常に強力なOWMよりも大幅に改善されていることが分かる。
論文 参考訳(メタデータ) (2020-05-07T13:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。