Do LLMs Understand User Preferences? Evaluating LLMs On User Rating
Prediction
- URL: http://arxiv.org/abs/2305.06474v1
- Date: Wed, 10 May 2023 21:43:42 GMT
- Title: Do LLMs Understand User Preferences? Evaluating LLMs On User Rating
Prediction
- Authors: Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy,
Lichan Hong, Ed Chi, Derek Zhiyuan Cheng
- Abstract summary: Large Language Models (LLMs) have demonstrated exceptional capabilities in generalizing to new tasks in a zero-shot or few-shot manner.
We investigate various LLMs in different sizes, ranging from 250M to 540B parameters and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios.
- Score: 15.793007223588672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated exceptional capabilities in
generalizing to new tasks in a zero-shot or few-shot manner. However, the
extent to which LLMs can comprehend user preferences based on their previous
behavior remains an emerging and still unclear research question.
Traditionally, Collaborative Filtering (CF) has been the most effective method
for these tasks, predominantly relying on the extensive volume of rating data.
In contrast, LLMs typically demand considerably less data while maintaining an
exhaustive world knowledge about each item, such as movies or products. In this
paper, we conduct a thorough examination of both CF and LLMs within the classic
task of user rating prediction, which involves predicting a user's rating for a
candidate item based on their past ratings. We investigate various LLMs in
different sizes, ranging from 250M to 540B parameters and evaluate their
performance in zero-shot, few-shot, and fine-tuning scenarios. We conduct
comprehensive analysis to compare between LLMs and strong CF methods, and find
that zero-shot LLMs lag behind traditional recommender models that have the
access to user interaction data, indicating the importance of user interaction
data. However, through fine-tuning, LLMs achieve comparable or even better
performance with only a small fraction of the training data, demonstrating
their potential through data efficiency.
Related papers
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - 100 instances is all you need: predicting the success of a new LLM on unseen data by testing on a few instances [11.783547185760007]
We use the evaluation results of previously tested LLMs to reduce the number of evaluations required to predict the performance of a new LLM.
We conduct empirical studies on HELM-Lite and KindsOfReasoning, a collection of existing reasoning datasets.
arXiv Detail & Related papers (2024-09-05T14:19:45Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System [19.8986219047121]
Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms.
Recent strategies have focused on leveraging modality information of user/items based on pre-trained modality encoders and Large Language Models.
We propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario.
arXiv Detail & Related papers (2024-04-17T13:03:07Z) - PiCO: Peer Review in LLMs based on the Consistency Optimization [19.130941716491716]
We use peer-review mechanisms to measure large language models (LLMs) automatically.
We formalize it as a constrained optimization problem, intending to maximize the consistency of each LLM's capabilities and scores.
We propose three metrics called PEN, CIN, and LIS to evaluate the gap in aligning human rankings.
arXiv Detail & Related papers (2024-02-02T18:49:26Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.