Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System
- URL: http://arxiv.org/abs/2404.11343v2
- Date: Sat, 1 Jun 2024 07:08:49 GMT
- Title: Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System
- Authors: Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, Chanyoung Park,
- Abstract summary: Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms.
Recent strategies have focused on leveraging modality information of user/items based on pre-trained modality encoders and Large Language Models.
We propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario.
- Score: 19.8986219047121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms. However, as CF-RecSys struggles under cold scenarios with sparse user-item interactions, recent strategies have focused on leveraging modality information of user/items (e.g., text or images) based on pre-trained modality encoders and Large Language Models (LLMs). Despite their effectiveness under cold scenarios, we observe that they underperform simple traditional collaborative filtering models under warm scenarios due to the lack of collaborative knowledge. In this work, we propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario. Our main idea is to enable an LLM to directly leverage the collaborative knowledge contained in a pre-trained state-of-the-art CF-RecSys so that the emergent ability of the LLM as well as the high-quality user/item embeddings that are already trained by the state-of-the-art CF-RecSys can be jointly exploited. This approach yields two advantages: (1) model-agnostic, allowing for integration with various existing CF-RecSys, and (2) efficiency, eliminating the extensive fine-tuning typically required for LLM-based recommenders. Our extensive experiments on various real-world datasets demonstrate the superiority of A-LLMRec in various scenarios, including cold/warm, few-shot, cold user, and cross-domain scenarios. Beyond the recommendation task, we also show the potential of A-LLMRec in generating natural language outputs based on the understanding of the collaborative knowledge by performing a favorite genre prediction task. Our code is available at https://github.com/ghdtjr/A-LLMRec .
Related papers
- STAR: A Simple Training-free Approach for Recommendations using Large Language Models [36.18841135511487]
Current state-of-the-art methods rely on fine-tuning large language models (LLMs) to achieve optimal results.
We propose a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning.
Our method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys & Games, and -1.8% on Sports & Outdoors.
arXiv Detail & Related papers (2024-10-21T19:34:40Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems.
We propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems.
HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling.
arXiv Detail & Related papers (2024-09-19T13:03:07Z) - EasyRec: Simple yet Effective Language Models for Recommendation [6.311058599430178]
EasyRec is an effective and easy-to-use approach that seamlessly integrates text-based semantic understanding with collaborative signals.
EasyRec employs a text-behavior alignment framework, which combines contrastive learning with collaborative language model tuning.
The study highlights the potential of seamlessly integrating EasyRec as a plug-and-play component into text-enhanced collaborative filtering frameworks.
arXiv Detail & Related papers (2024-08-16T16:09:59Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - LLMBox: A Comprehensive Library for Large Language Models [109.15654830320553]
This paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of large language models (LLMs)
This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency.
arXiv Detail & Related papers (2024-07-08T02:39:33Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations [67.57808826577678]
Large Language Models (LLMs) can model recommendation tasks as language analysis tasks and provide zero-shot results based on their vast open-world knowledge.
But the large scale of the item corpus poses a challenge to LLMs, leading to substantial token consumption that makes it impractical to deploy in real-world recommendation systems.
We introduce a tree-based LLM recommendation framework LLMTreeRec, which structures all items into an item tree to improve the efficiency of LLM's item retrieval.
arXiv Detail & Related papers (2024-03-31T14:41:49Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - Do LLMs Understand User Preferences? Evaluating LLMs On User Rating
Prediction [15.793007223588672]
Large Language Models (LLMs) have demonstrated exceptional capabilities in generalizing to new tasks in a zero-shot or few-shot manner.
We investigate various LLMs in different sizes, ranging from 250M to 540B parameters and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios.
arXiv Detail & Related papers (2023-05-10T21:43:42Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
Collaborative filtering (CF) is a fundamental approach for recommender systems.
In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model.
Key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction and prediction function.
arXiv Detail & Related papers (2021-06-14T14:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.