論文の概要: Autocorrelations Decay in Texts and Applicability Limits of Language
Models
- arxiv url: http://arxiv.org/abs/2305.06615v1
- Date: Thu, 11 May 2023 07:23:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 15:37:50.647953
- Title: Autocorrelations Decay in Texts and Applicability Limits of Language
Models
- Title(参考訳): テキストにおける自己相関の減少と言語モデルの適用限界
- Authors: Nikolay Mikhaylovskiy and Ilya Churilov
- Abstract要約: 我々は、テキスト中の単語の自己相関が、権力法則に従って崩壊することを実証的に実証した。
複数の言語に翻訳されたテキストに対して、分布意味論がコヒーレントな自己相関減衰指数を与えることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the laws of autocorrelations decay in texts are closely related
to applicability limits of language models. Using distributional semantics we
empirically demonstrate that autocorrelations of words in texts decay according
to a power law. We show that distributional semantics provides coherent
autocorrelations decay exponents for texts translated to multiple languages.
The autocorrelations decay in generated texts is quantitatively and often
qualitatively different from the literary texts. We conclude that language
models exhibiting Markov behavior, including large autoregressive language
models, may have limitations when applied to long texts, whether analysis or
generation.
- Abstract(参考訳): テキストにおける自己相関の法則は言語モデルの適用可能性の限界と密接に関連していることを示す。
分布的意味論を用いて,テキスト中の単語の自己相関がパワー則に従って崩壊することを示す。
分布セマンティクスは複数の言語に翻訳されたテキストに対して一貫性のある自己相関減衰指数を与える。
生成されたテキストにおける自己相関の崩壊は定量的に、しばしば文学的テキストと質的に異なる。
結論として,大規模な自己回帰型言語モデルを含むマルコフ行動を示す言語モデルは,解析や生成にかかわらず長文に適用すると制限を受ける可能性がある。
関連論文リスト
- Quantifying the Plausibility of Context Reliance in Neural Machine
Translation [25.29330352252055]
我々は、PECoRe(Context Reliance)の可塑性評価を導入する。
PECoReは、言語モデル世代におけるコンテキスト使用量の定量化を目的として設計されたエンドツーエンドの解釈可能性フレームワークである。
我々は、文脈対応機械翻訳モデルの妥当性を定量化するために、pecoreを使用します。
論文 参考訳(メタデータ) (2023-10-02T13:26:43Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
我々は,テキストの高レベル構造を評価するために,潜在空間におけるモデル批判という統計ツールを適用した。
我々は,コヒーレンス,コア,トピックスという,ハイレベルな談話の3つの代表的な側面について実験を行った。
トランスフォーマーベースの言語モデルでは、トピック構造をキャプチャできるが、構造コヒーレンスやモデリングコアスを維持するのが難しくなる。
論文 参考訳(メタデータ) (2022-10-16T04:35:58Z) - Universality and diversity in word patterns [0.0]
本稿では,11言語を対象とした語彙統計関係の分析を行う。
言語が単語関係を表現するために利用する多種多様な方法が、ユニークなパターン分布を生み出していることがわかった。
論文 参考訳(メタデータ) (2022-08-23T20:03:27Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
現在の言語モデルは高品質なテキストを生成することができる。
彼らは、これまで見たテキストを単にコピーしているか、それとも一般化可能な言語的抽象化を学んだのか?
本稿では、生成したテキストの新規性を評価するための分析スイートであるRAVENを紹介する。
論文 参考訳(メタデータ) (2021-11-18T04:07:09Z) - Comparative Error Analysis in Neural and Finite-state Models for
Unsupervised Character-level Transduction [34.1177259741046]
2つのモデルクラスを並べて比較すると、同等のパフォーマンスを達成したとしても、異なるタイプのエラーが発生する傾向があります。
復号時における有限状態とシーケンス・ツー・シーケンスの組合せが、出力を定量的かつ質的にどう影響するかを考察する。
論文 参考訳(メタデータ) (2021-06-24T00:09:24Z) - Language Model Evaluation Beyond Perplexity [47.268323020210175]
我々は、言語モデルから生成されたテキストが、訓練された人為的なテキストに存在する統計的傾向を示すかどうかを分析する。
ニューラルネットワークモデルは、考慮された傾向のサブセットのみを学習しているように見えるが、提案された理論分布よりも経験的傾向とより密接に一致している。
論文 参考訳(メタデータ) (2021-05-31T20:13:44Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
誤情報キャンペーンで使用される可能性があるため、長く一貫性のあるテキストを生成できる大規模な言語モデルが危険であると考える者もいる。
ここでは、仮説テスト問題として大規模言語モデル出力検出を定式化し、テキストを真あるいは生成されたものと分類する。
論文 参考訳(メタデータ) (2020-02-09T19:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。