Generation of Structurally Realistic Retinal Fundus Images with
Diffusion Models
- URL: http://arxiv.org/abs/2305.06813v1
- Date: Thu, 11 May 2023 14:09:05 GMT
- Title: Generation of Structurally Realistic Retinal Fundus Images with
Diffusion Models
- Authors: Sojung Go, Younghoon Ji, Sang Jun Park, Soochahn Lee
- Abstract summary: We generate artery/vein masks to create the vascular structure, which we then condition to produce retinal fundus images.
The proposed method can generate high-quality images with more realistic vascular structures.
- Score: 1.9346186297861747
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new technique for generating retinal fundus images that have
anatomically accurate vascular structures, using diffusion models. We generate
artery/vein masks to create the vascular structure, which we then condition to
produce retinal fundus images. The proposed method can generate high-quality
images with more realistic vascular structures and can create a diverse range
of images based on the strengths of the diffusion model. We present
quantitative evaluations that demonstrate the performance improvement using our
method for data augmentation on vessel segmentation and artery/vein
classification. We also present Turing test results by clinical experts,
showing that our generated images are difficult to distinguish with real
images. We believe that our method can be applied to construct stand-alone
datasets that are irrelevant of patient privacy.
Related papers
- Multi-Conditioned Denoising Diffusion Probabilistic Model (mDDPM) for Medical Image Synthesis [22.0080610434872]
We propose a controlled generation framework for synthetic images with annotations.
We show that our approach can produce annotated lung CT images that can faithfully represent anatomy.
Our experiments demonstrate that controlled generative frameworks of this nature can surpass nearly every state-of-the-art image generative model.
arXiv Detail & Related papers (2024-09-07T01:19:02Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Generating Realistic Counterfactuals for Retinal Fundus and OCT Images
using Diffusion Models [36.81751569090276]
Counterfactual reasoning is often used in clinical settings to explain decisions or weigh alternatives.
Here, we demonstrate that using a diffusion model in combination with an adversarially robust classifier trained on retinal disease classification tasks enables the generation of highly realistic counterfactuals.
In a user study, domain experts found the counterfactuals generated using our method significantly more realistic than counterfactuals generated from a previous method, and even indistinguishable from real images.
arXiv Detail & Related papers (2023-11-20T09:28:04Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets.
We explore the sub-components of the Stable Diffusion pipeline to fine-tune the model to generate medical images.
Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image.
arXiv Detail & Related papers (2022-10-09T01:43:08Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
In this work, we propose an alternative domain-adaptive approach to depth estimation.
Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner.
The results of our experiments show that the proposed method improves the network's performance on real images by a considerable margin.
arXiv Detail & Related papers (2021-09-24T08:11:34Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.