Meta-Learners for Few-Shot Weakly-Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2305.06912v1
- Date: Thu, 11 May 2023 15:57:45 GMT
- Title: Meta-Learners for Few-Shot Weakly-Supervised Medical Image Segmentation
- Authors: Hugo Oliveira, Pedro H. T. Gama, Isabelle Bloch, Roberto Marcondes
Cesar Jr
- Abstract summary: We propose a generic Meta-Learning framework for few-shot weakly-supervised segmentation in medical imaging domains.
We conduct a comparative analysis of meta-learners adapted to few-shot image segmentation in different sparsely annotated radiological tasks.
- Score: 2.781492199939609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most uses of Meta-Learning in visual recognition are very often applied to
image classification, with a relative lack of works in other tasks {such} as
segmentation and detection. We propose a generic Meta-Learning framework for
few-shot weakly-supervised segmentation in medical imaging domains. We conduct
a comparative analysis of meta-learners from distinct paradigms adapted to
few-shot image segmentation in different sparsely annotated radiological tasks.
The imaging modalities include 2D chest, mammographic and dental X-rays, as
well as 2D slices of volumetric tomography and resonance images. Our
experiments consider a total of 9 meta-learners, 4 backbones and multiple
target organ segmentation tasks. We explore small-data scenarios in radiology
with varying weak annotation styles and densities. Our analysis shows that
metric-based meta-learning approaches achieve better segmentation results in
tasks with smaller domain shifts in comparison to the meta-training datasets,
while some gradient- and fusion-based meta-learners are more generalizable to
larger domain shifts.
Related papers
- Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - Meta-hallucinator: Towards Few-Shot Cross-Modality Cardiac Image
Segmentation [25.821877102329506]
Unsupervised domain adaptation (UDA) techniques have recently achieved promising cross-modality medical image segmentation.
We propose a novel transformation-consistent meta-hallucination framework, meta-hallucinator.
In our framework, hallucination and segmentation models are jointly trained with the gradient-based meta-learning strategy.
arXiv Detail & Related papers (2023-05-11T17:06:37Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
We propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics.
We also address the preservation of scale information, a powerful tool in aiding image understanding.
The proposed unified SSL framework surpasses its self-supervised counterparts on various tasks.
arXiv Detail & Related papers (2023-01-02T17:47:27Z) - Semi-Supervised Domain Generalization for Cardiac Magnetic Resonance
Image Segmentation with High Quality Pseudo Labels [8.283424744148258]
We present a domain generalization method for semi-supervised medical segmentation.
Our main goal is to improve the quality of pseudo labels under extreme MRI Analysis with various domains.
Our approach consistently generates accurate segmentation results of cardiac magnetic resonance images with different respiratory motions.
arXiv Detail & Related papers (2022-09-30T12:57:41Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation [47.428577772279176]
We present MetaMedSeg, a gradient-based meta-learning algorithm that redefines the meta-learning task for the volumetric medical data.
In the experiments, we present an evaluation of the medical decathlon dataset by extracting 2D slices from CT and MRI volumes of different organs.
Our proposed volumetric task definition leads to up to 30% improvement in terms of IoU compared to related baselines.
arXiv Detail & Related papers (2021-09-18T11:13:45Z) - Weakly Supervised Few-Shot Segmentation Via Meta-Learning [2.0962464943252934]
We present two novel meta learning methods, named WeaSeL and ProtoSeg, for the few-shot semantic segmentation task with sparse annotations.
We conducted extensive evaluation of the proposed methods in different applications in medical imaging and agricultural remote sensing.
arXiv Detail & Related papers (2021-09-03T18:20:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.