When Giant Language Brains Just Aren't Enough! Domain Pizzazz with
Knowledge Sparkle Dust
- URL: http://arxiv.org/abs/2305.07230v2
- Date: Sat, 8 Jul 2023 08:13:06 GMT
- Title: When Giant Language Brains Just Aren't Enough! Domain Pizzazz with
Knowledge Sparkle Dust
- Authors: Minh-Tien Nguyen, Duy-Hung Nguyen, Shahab Sabahi, Hung Le, Jeff Yang,
Hajime Hotta
- Abstract summary: This paper presents an empirical analysis aimed at bridging the gap in adapting large language models to practical use cases.
We select the question answering (QA) task of insurance as a case study due to its challenge of reasoning.
Based on the task we design a new model relied on LLMs which are empowered by additional knowledge extracted from insurance policy rulebooks and DBPedia.
- Score: 15.484175299150904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have significantly advanced the field of natural
language processing, with GPT models at the forefront. While their remarkable
performance spans a range of tasks, adapting LLMs for real-world business
scenarios still poses challenges warranting further investigation. This paper
presents an empirical analysis aimed at bridging the gap in adapting LLMs to
practical use cases. To do that, we select the question answering (QA) task of
insurance as a case study due to its challenge of reasoning. Based on the task
we design a new model relied on LLMs which are empowered by additional
knowledge extracted from insurance policy rulebooks and DBpedia. The additional
knowledge helps LLMs to understand new concepts of insurance for domain
adaptation. Preliminary results on two QA datasets show that knowledge
enhancement significantly improves the reasoning ability of GPT-3.5 (55.80% and
57.83% in terms of accuracy). The analysis also indicates that existing public
knowledge bases, e.g., DBPedia is beneficial for knowledge enhancement. Our
findings reveal that the inherent complexity of business scenarios often
necessitates the incorporation of domain-specific knowledge and external
resources for effective problem-solving.
Related papers
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
Large language models (LLMs) are versatile and can solve different tasks due to their emergent ability and generalizability.
In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases.
arXiv Detail & Related papers (2023-09-06T15:55:01Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.