Multi-Relational Hyperbolic Word Embeddings from Natural Language
Definitions
- URL: http://arxiv.org/abs/2305.07303v5
- Date: Fri, 16 Feb 2024 11:56:20 GMT
- Title: Multi-Relational Hyperbolic Word Embeddings from Natural Language
Definitions
- Authors: Marco Valentino, Danilo S. Carvalho, Andr\'e Freitas
- Abstract summary: This paper presents a multi-relational model that explicitly leverages such a structure to derive word embeddings from definitions.
An empirical analysis demonstrates that the framework can help imposing the desired structural constraints.
Experiments reveal the superiority of the Hyperbolic word embeddings over the Euclidean counterparts.
- Score: 5.763375492057694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural language definitions possess a recursive, self-explanatory semantic
structure that can support representation learning methods able to preserve
explicit conceptual relations and constraints in the latent space. This paper
presents a multi-relational model that explicitly leverages such a structure to
derive word embeddings from definitions. By automatically extracting the
relations linking defined and defining terms from dictionaries, we demonstrate
how the problem of learning word embeddings can be formalised via a
translational framework in Hyperbolic space and used as a proxy to capture the
global semantic structure of definitions. An extensive empirical analysis
demonstrates that the framework can help imposing the desired structural
constraints while preserving the semantic mapping required for controllable and
interpretable traversal. Moreover, the experiments reveal the superiority of
the Hyperbolic word embeddings over the Euclidean counterparts and demonstrate
that the multi-relational approach can obtain competitive results when compared
to state-of-the-art neural models, with the advantage of being intrinsically
more efficient and interpretable.
Related papers
- Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learning aims to improve the explainability of deep learning methods by training a data encoder that identifies semantically meaningful latent variables in the data generation process.
There is no consensus regarding the objective of disentangled representation learning.
We propose a novel method for disentangled representation learning by employing an integration of mutual information constraint and independence constraint.
arXiv Detail & Related papers (2024-09-04T13:00:59Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
We propose a Prompt-based Logical Semantics Enhancement (PLSE) method for Implicit Discourse Relation Recognition (IDRR)
Our method seamlessly injects knowledge relevant to discourse relation into pre-trained language models through prompt-based connective prediction.
Experimental results on PDTB 2.0 and CoNLL16 datasets demonstrate that our method achieves outstanding and consistent performance against the current state-of-the-art models.
arXiv Detail & Related papers (2023-11-01T08:38:08Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence.
We introduce a new Compositional Temporal Grounding task and construct two new dataset splits.
We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization.
arXiv Detail & Related papers (2023-01-22T08:02:23Z) - Neural Abstructions: Abstractions that Support Construction for Grounded
Language Learning [69.1137074774244]
Leveraging language interactions effectively requires addressing limitations in the two most common approaches to language grounding.
We introduce the idea of neural abstructions: a set of constraints on the inference procedure of a label-conditioned generative model.
We show that with this method a user population is able to build a semantic modification for an open-ended house task in Minecraft.
arXiv Detail & Related papers (2021-07-20T07:01:15Z) - Modelling Compositionality and Structure Dependence in Natural Language [0.12183405753834563]
Drawing on linguistics and set theory, a formalisation of these ideas is presented in the first half of this thesis.
We see how cognitive systems that process language need to have certain functional constraints.
Using the advances of word embedding techniques, a model of relational learning is simulated.
arXiv Detail & Related papers (2020-11-22T17:28:50Z) - Emergence of Syntax Needs Minimal Supervision [0.0]
This paper is a theoretical contribution to the debate on the learnability of syntax from a corpus without explicit syntax-specific guidance.
Our approach originates in the observable structure of a corpus, which we use to define grammaticality (syntactic information) and meaning/pragmatics information.
arXiv Detail & Related papers (2020-05-03T15:38:33Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - Multiplex Word Embeddings for Selectional Preference Acquisition [70.33531759861111]
We propose a multiplex word embedding model, which can be easily extended according to various relations among words.
Our model can effectively distinguish words with respect to different relations without introducing unnecessary sparseness.
arXiv Detail & Related papers (2020-01-09T04:47:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.