Large Language Models as Quasi-crystals: Coherence Without Repetition in Generative Text
- URL: http://arxiv.org/abs/2504.11986v2
- Date: Sat, 19 Apr 2025 13:53:16 GMT
- Title: Large Language Models as Quasi-crystals: Coherence Without Repetition in Generative Text
- Authors: Jose Manuel Guevara-Vela,
- Abstract summary: essay proposes an analogy between large language models (LLMs) and quasicrystals, systems that exhibit global coherence without periodic repetition, generated through local constraints.<n> Drawing on the history of quasicrystals, it highlights an alternative mode of coherence in generative language: constraint-based organization without repetition or symbolic intent.<n>This essay aims to reframe the current discussion around large language models, not by rejecting existing methods, but by suggesting an additional axis of interpretation grounded in structure rather than semantics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This essay proposes an interpretive analogy between large language models (LLMs) and quasicrystals, systems that exhibit global coherence without periodic repetition, generated through local constraints. While LLMs are typically evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that one of their most characteristic behaviors is the production of internally resonant linguistic patterns. Drawing on the history of quasicrystals, which forced a redefinition of structural order in physical systems, the analogy highlights an alternative mode of coherence in generative language: constraint-based organization without repetition or symbolic intent. Rather than viewing LLMs as imperfect agents or stochastic approximators, we suggest understanding them as generators of quasi-structured outputs. This framing complements existing evaluation paradigms by foregrounding formal coherence and pattern as interpretable features of model behavior. While the analogy has limits, it offers a conceptual tool for exploring how coherence might arise and be assessed in systems where meaning is emergent, partial, or inaccessible. In support of this perspective, we draw on philosophy of science and language, including model-based accounts of scientific representation, structural realism, and inferentialist views of meaning. We further propose the notion of structural evaluation: a mode of assessment that examines how well outputs propagate constraint, variation, and order across spans of generated text. This essay aims to reframe the current discussion around large language models, not by rejecting existing methods, but by suggesting an additional axis of interpretation grounded in structure rather than semantics.
Related papers
- Computation Mechanism Behind LLM Position Generalization [59.013857707250814]
Large language models (LLMs) exhibit flexibility in handling textual positions.<n>They can understand texts with position perturbations and generalize to longer texts.<n>This work connects the linguistic phenomenon with LLMs' computational mechanisms.
arXiv Detail & Related papers (2025-03-17T15:47:37Z) - Unveiling Attractor Cycles in Large Language Models: A Dynamical Systems View of Successive Paraphrasing [28.646627695015646]
Repetitive transformations can lead to stable configurations, known as attractors, including fixed points and limit cycles.<n>Applying this perspective to large language models (LLMs), which iteratively map input text to output text, provides a principled approach to characterizing long-term behaviors.<n>Successive paraphrasing serves as a compelling testbed for exploring such dynamics, as paraphrases re-express the same underlying meaning with linguistic variation.
arXiv Detail & Related papers (2025-02-21T04:46:57Z) - Language Models as Semiotic Machines: Reconceptualizing AI Language Systems through Structuralist and Post-Structuralist Theories of Language [0.0]
This paper proposes a novel framework for understanding large language models (LLMs)
I argue that LLMs should be understood as models of language itself, aligning with Jacques's concept of 'writing' (l'ecriture)
I apply Saussure's critique of Saussure to position 'writing' as the object modeled by LLMs, offering a view of the machine's'mind' as a statistical approximation of sign behavior.
arXiv Detail & Related papers (2024-10-16T21:45:54Z) - Misinforming LLMs: vulnerabilities, challenges and opportunities [4.54019093815234]
Large Language Models (LLMs) have made significant advances in natural language processing, but their underlying mechanisms are often misunderstood.
This paper argues that current LLM architectures are inherently untrustworthy due to their reliance on correlations of sequential patterns of word embedding vectors.
Research into combining generative transformer-based models with fact bases and logic programming languages may lead to the development of trustworthy LLMs.
arXiv Detail & Related papers (2024-08-02T10:35:49Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - What makes Models Compositional? A Theoretical View: With Supplement [60.284698521569936]
We propose a general neuro-symbolic definition of compositional functions and their compositional complexity.
We show how various existing general and special purpose sequence processing models fit this definition and use it to analyze their compositional complexity.
arXiv Detail & Related papers (2024-05-02T20:10:27Z) - Linguistic Structure Induction from Language Models [1.8130068086063336]
This thesis focuses on producing constituency and dependency structures from Language Models (LMs) in an unsupervised setting.
I present a detailed study on StructFormer (SF) which retrofits a transformer architecture with a encoder network to produce constituency and dependency structures.
I present six experiments to analyze and address this field's challenges.
arXiv Detail & Related papers (2024-03-11T16:54:49Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
Knowledge Base Question Answering (KBQA) aims to answer natural language questions based on facts in knowledge bases.
Recent works leverage the capabilities of large language models (LLMs) for logical form generation to improve performance.
arXiv Detail & Related papers (2024-01-11T09:27:50Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
We examine the successes and limitations of the GPT-3, ChatGPT, and GPT-4 models in analysis of sentence meaning structure.
We find that models can reliably reproduce the basic format of AMR, and can often capture core event, argument, and modifier structure.
Overall, our findings indicate that these models out-of-the-box can capture aspects of semantic structure, but there remain key limitations in their ability to support fully accurate semantic analyses or parses.
arXiv Detail & Related papers (2023-10-26T21:47:59Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Multi-Relational Hyperbolic Word Embeddings from Natural Language
Definitions [5.763375492057694]
This paper presents a multi-relational model that explicitly leverages such a structure to derive word embeddings from definitions.
An empirical analysis demonstrates that the framework can help imposing the desired structural constraints.
Experiments reveal the superiority of the Hyperbolic word embeddings over the Euclidean counterparts.
arXiv Detail & Related papers (2023-05-12T08:16:06Z) - Semantic Role Labeling Meets Definition Modeling: Using Natural Language
to Describe Predicate-Argument Structures [104.32063681736349]
We present an approach to describe predicate-argument structures using natural language definitions instead of discrete labels.
Our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance.
arXiv Detail & Related papers (2022-12-02T11:19:16Z) - Emergent Linguistic Structures in Neural Networks are Fragile [20.692540987792732]
Large Language Models (LLMs) have been reported to have strong performance on natural language processing tasks.
We propose a framework to assess the consistency and robustness of linguistic representations.
arXiv Detail & Related papers (2022-10-31T15:43:57Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
We apply a statistical tool, model criticism in latent space, to evaluate the high-level structure of generated text.
We perform experiments on three representative aspects of high-level discourse -- coherence, coreference, and topicality.
We find that transformer-based language models are able to capture topical structures but have a harder time maintaining structural coherence or modeling coreference.
arXiv Detail & Related papers (2022-10-16T04:35:58Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
Language models have emerged as NLP's workhorse, displaying increasingly fluent generation capabilities.
We observe a lack of clarity across numerous dimensions, which influences the hypotheses that researchers form.
We outline the implications of the different types of research questions exhibited in studies on syntax.
arXiv Detail & Related papers (2021-10-17T18:25:23Z) - Modelling Compositionality and Structure Dependence in Natural Language [0.12183405753834563]
Drawing on linguistics and set theory, a formalisation of these ideas is presented in the first half of this thesis.
We see how cognitive systems that process language need to have certain functional constraints.
Using the advances of word embedding techniques, a model of relational learning is simulated.
arXiv Detail & Related papers (2020-11-22T17:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.