論文の概要: MotionBEV: Attention-Aware Online LiDAR Moving Object Segmentation with
Bird's Eye View based Appearance and Motion Features
- arxiv url: http://arxiv.org/abs/2305.07336v1
- Date: Fri, 12 May 2023 09:28:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 13:38:50.673059
- Title: MotionBEV: Attention-Aware Online LiDAR Moving Object Segmentation with
Bird's Eye View based Appearance and Motion Features
- Title(参考訳): MotionBEV:Bird's Eye View を用いた意識認識型オンラインLiDAR移動物体セグメンテーション
- Authors: Bo Zhou, Jiapeng Xie, Yan Pan, Jiajie Wu, and Chuanzhao Lu
- Abstract要約: 我々は、LiDAR移動物体セグメンテーションのための高速かつ正確なフレームワークであるMotionBEVを紹介する。
提案手法は,3次元LiDARスキャンを2次元極性BEV表現に変換し,リアルタイムな性能を実現する。
提案手法は,3090データセット上での平均推定時間23msで,セマンティックKITTI-MOSベンチマークの最先端性能を実現する。
- 参考スコア(独自算出の注目度): 5.186531650935954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying moving objects is an essential capability for autonomous systems,
as it provides critical information for pose estimation, navigation, collision
avoidance and static map construction. In this paper, we present MotionBEV, a
fast and accurate framework for LiDAR moving object segmentation, which
segments moving objects with appearance and motion features in bird's eye view
(BEV) domain. Our approach converts 3D LiDAR scans into 2D polar BEV
representation to achieve real-time performance. Specifically, we learn
appearance features with a simplified PointNet, and compute motion features
through the height differences of consecutive frames of point clouds projected
onto vertical columns in the polar BEV coordinate system. We employ a
dual-branch network bridged by the Appearance-Motion Co-attention Module (AMCM)
to adaptively fuse the spatio-temporal information from appearance and motion
features. Our approach achieves state-of-the-art performance on the
SemanticKITTI-MOS benchmark, with an average inference time of 23ms on an RTX
3090 GPU. Furthermore, to demonstrate the practical effectiveness of our
method, we provide a LiDAR-MOS dataset recorded by a solid-state LiDAR, which
features non-repetitive scanning patterns and small field of view.
- Abstract(参考訳): 移動物体を特定することは自律システムにとって必須の機能であり、ポーズ推定、ナビゲーション、衝突回避、静的マップ構築のための重要な情報を提供する。
本稿では,鳥の視線(BEV)領域における移動物体の出現・運動特徴をセグメント化するLiDAR移動物体セグメンテーションの高速かつ高精度なフレームワークであるMotionBEVを提案する。
提案手法は,3次元LiDARスキャンを2次元極性BEV表現に変換し,リアルタイムな性能を実現する。
具体的には、極性BEV座標系における垂直列上に投影される点雲の連続的なフレームの高さ差によって、簡易なポイントネットを用いて外観特徴を学習する。
外観・運動協調モジュール (amcm) で橋渡しされたデュアルブランチネットワークを用いて, 時空間情報を出現・運動の特徴から順応的に分離する。
RTX 3090 GPU上での平均推定時間は23msであるSemanticKITTI-MOSベンチマークの最先端性能を実現する。
さらに,本手法の実用性を示すために,非繰り返し走査パターンと小さな視野を特徴とする,固体ライダーで記録されたlidar-mosデータセットを提供する。
関連論文リスト
- CV-MOS: A Cross-View Model for Motion Segmentation [13.378850442525945]
本稿では,移動物体セグメンテーションのためのクロスビューモデルCV-MOSを紹介する。
BEV と RV の残差マップから動きを捉えることで空間時空間情報を分離する。
提案手法は,SemanticKittiデータセットの検証とテストセットにおいて,IoU(%)スコアが77.5%,79.2%に達した。
論文 参考訳(メタデータ) (2024-08-25T09:39:26Z) - MV-MOS: Multi-View Feature Fusion for 3D Moving Object Segmentation [4.386035726986601]
3D-to-2Dプロジェクションにおける動作と意味的特徴の有効活用と情報損失の回避は依然として重要な課題である。
点雲の異なる2次元表現からモーションセマンティックな特徴を融合させることにより,新しい多視点MOSモデル(MV-MOS)を提案する。
提案するマルチブランチ融合MOSフレームワークの有効性を総合実験により検証した。
論文 参考訳(メタデータ) (2024-08-20T07:30:00Z) - LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception Network for Autonomous Driving [12.713417063678335]
本稿では,LiDARに基づくオブジェクト検出,意味論,動作セグメンテーションのためのリアルタイムマルチタスク畳み込みニューラルネットワークを提案する。
オブジェクト検出を選択的に改善するためのセマンティック・ウェイト・アンド・ガイダンス(SWAG)モジュールを提案する。
我々は,2つのタスク,セマンティックとモーションセグメンテーション,および3Dオブジェクト検出のための最先端性能に近い2つのタスクに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-07-17T21:22:17Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
Ret3Dと呼ばれるシンプルで効率的で効果的な2段階検出器を導入する。
Ret3Dの中核は、新しいフレーム内およびフレーム間関係モジュールの利用である。
無視できる余分なオーバーヘッドにより、Ret3Dは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-18T03:48:58Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
本稿では,LiDAR-MOSの性能向上のために,空間時空間情報とLiDARスキャンの異なる表現モダリティを併用した新しいディープニューラルネットワークを提案する。
具体的には、まず、空間情報と時間情報とを別々に扱うために、レンジ画像に基づくデュアルブランチ構造を用いる。
また、3次元スパース畳み込みによるポイントリファインメントモジュールを使用して、LiDAR範囲の画像とポイントクラウド表現の両方からの情報を融合する。
論文 参考訳(メタデータ) (2022-07-05T17:59:17Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
本稿では,ポイントクラウド領域における効果的な単視分割フレームワークとして機能する動的シフトネットワーク(DS-Net)を提案する。
提案するDS-Netは,両タスクの現在の最先端手法よりも優れた精度を実現する。
DS-Netを4次元パノプティカルLiDARセグメンテーションに拡張し、一列のLiDARフレーム上で時間的に統一されたインスタンスクラスタリングを行う。
論文 参考訳(メタデータ) (2022-03-14T15:25:42Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
テンポラルな文グラウンドディングは、与えられた文クエリに従って、意図しないビデオのターゲットセグメントをセマンティックにローカライズすることを目的としている。
これまでのほとんどの研究は、ビデオ全体のフレーム全体のフレームレベルの特徴を学習することに集中しており、それらをテキスト情報と直接一致させる。
我々は,光フロー誘導型モーションアウェア,検出ベース外観アウェア,3D認識オブジェクトレベル機能を備えた,動き誘導型3Dセマンティック推論ネットワーク(MA3SRN)を提案する。
論文 参考訳(メタデータ) (2022-03-06T13:57:09Z) - LiMoSeg: Real-time Bird's Eye View based LiDAR Motion Segmentation [8.184561295177623]
本稿では,光検出・ラング(LiDAR)データの動作セグメント化のための新しいリアルタイムアーキテクチャを提案する。
我々は2D Birdのアイビュー表現における2つの連続したLiDARデータをスキャンし、静的または移動としてピクセルワイズ分類を行う。
Nvidia Jetson Xavierという,一般的に使用されている自動車組み込みプラットフォーム上では,低レイテンシの8ミリ秒を実証する。
論文 参考訳(メタデータ) (2021-11-08T23:40:55Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDARベースのパノプティカルセグメンテーションは、オブジェクトとシーンを統一的に解析することを目的としている。
本稿では,ポイントクラウド領域における効果的な単視分割フレームワークとして機能する動的シフトネットワーク(DS-Net)を提案する。
提案するDS-Netは,現在の最先端手法よりも優れた精度を実現する。
論文 参考訳(メタデータ) (2020-11-24T08:44:46Z) - LiDAR-based Online 3D Video Object Detection with Graph-based Message
Passing and Spatiotemporal Transformer Attention [100.52873557168637]
3Dオブジェクト検出器は、通常は単一フレームの検出にフォーカスするが、連続する点のクラウドフレームでは情報を無視する。
本稿では,ポイントシーケンスで動作するエンドツーエンドのオンライン3Dビデオオブジェクト検出器を提案する。
論文 参考訳(メタデータ) (2020-04-03T06:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。