論文の概要: Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation
- arxiv url: http://arxiv.org/abs/2207.02201v1
- Date: Tue, 5 Jul 2022 17:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 16:17:55.153308
- Title: Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation
- Title(参考訳): LiDARを用いた3次元移動物体分割のための空間時間情報融合
- Authors: Jiadai Sun, Yuchao Dai, Xianjing Zhang, Jintao Xu, Rui Ai, Weihao Gu,
Xieyuanli Chen
- Abstract要約: 本稿では,LiDAR-MOSの性能向上のために,空間時空間情報とLiDARスキャンの異なる表現モダリティを併用した新しいディープニューラルネットワークを提案する。
具体的には、まず、空間情報と時間情報とを別々に扱うために、レンジ画像に基づくデュアルブランチ構造を用いる。
また、3次元スパース畳み込みによるポイントリファインメントモジュールを使用して、LiDAR範囲の画像とポイントクラウド表現の両方からの情報を融合する。
- 参考スコア(独自算出の注目度): 23.666607237164186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate moving object segmentation is an essential task for autonomous
driving. It can provide effective information for many downstream tasks, such
as collision avoidance, path planning, and static map construction. How to
effectively exploit the spatial-temporal information is a critical question for
3D LiDAR moving object segmentation (LiDAR-MOS). In this work, we propose a
novel deep neural network exploiting both spatial-temporal information and
different representation modalities of LiDAR scans to improve LiDAR-MOS
performance. Specifically, we first use a range image-based dual-branch
structure to separately deal with spatial and temporal information that can be
obtained from sequential LiDAR scans, and later combine them using
motion-guided attention modules. We also use a point refinement module via 3D
sparse convolution to fuse the information from both LiDAR range image and
point cloud representations and reduce the artifacts on the borders of the
objects. We verify the effectiveness of our proposed approach on the LiDAR-MOS
benchmark of SemanticKITTI. Our method outperforms the state-of-the-art methods
significantly in terms of LiDAR-MOS IoU. Benefiting from the devised
coarse-to-fine architecture, our method operates online at sensor frame rate.
The implementation of our method is available as open source at:
https://github.com/haomo-ai/MotionSeg3D.
- Abstract(参考訳): 正確な移動物体セグメンテーションは、自律運転に不可欠な課題である。
衝突回避、経路計画、静的マップ構築など、多くの下流タスクに効果的な情報を提供することができる。
空間-時間情報の有効利用は,3次元lidar移動物体セグメンテーション(lidar-mos)にとって重要な課題である。
本研究では,LiDAR-MOSの性能向上のために,空間時間情報とLiDARスキャンの異なる表現モダリティを併用した新しいディープニューラルネットワークを提案する。
具体的には、まずレンジ画像に基づくデュアルブランチ構造を用いて、逐次LiDARスキャンから得られる空間的・時間的情報を別々に扱い、その後、動き誘導型アテンションモジュールを用いて組み合わせる。
また、3Dスパース畳み込みによるポイントリファインメントモジュールを用いて、LiDAR範囲の画像とポイントクラウド表現の両方からの情報を融合し、オブジェクトの境界にあるアーティファクトを減らす。
本稿では,SemanticKITTIのLiDAR-MOSベンチマークにおける提案手法の有効性を検証する。
提案手法は,LiDAR-MOS IoUにおいて最先端の手法よりも優れていた。
設計した粗大なアーキテクチャの利点を生かして,本手法はセンサフレームレートでオンラインに動作する。
このメソッドの実装は、https://github.com/haomo-ai/motionseg3dでオープンソースとして利用可能である。
関連論文リスト
- Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
クロスフレーム動作予測情報を用いた時空間特徴学習を容易にするために,新しいLiDAR 3Dオブジェクト検出フレームワークLiSTMを導入する。
我々は,本フレームワークが優れた3次元検出性能を実現することを示すため,アグリゲーションとnuScenesデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-09-06T16:29:04Z) - FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry [28.606325312582218]
我々は,SLAMタスクにおける高精度かつ堅牢な状態推定を実現するために,高速かつ直接的LiDAR慣性・視覚的オドメトリーフレームワークであるFAST-LIVO2を提案する。
FAST-LIVO2はIMU、LiDAR、画像計測を逐次更新戦略で効率的に融合する。
本稿では,FAST-LIVO2のリアルタイムナビゲーション,空中マッピング,3次元モデルレンダリングの3つの応用例を示す。
論文 参考訳(メタデータ) (2024-08-26T06:01:54Z) - TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation [80.13343299606146]
そこで本稿では, 時系列LiDARアグリゲーション・蒸留(TLAD)アルゴリズムを提案する。
時間画像のフル活用を目的として,カメラFOVを大幅に拡張できるTIAFモジュールを設計した。
また,静的移動スイッチ拡張(SMSA)アルゴリズムを開発し,時間的情報を利用してオブジェクトの動作状態を自由に切り替える。
論文 参考訳(メタデータ) (2024-07-13T03:00:16Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
我々は、異なるLiDARスキャンからレーザービーム操作を統合するフレームワークであるLaserMix++を導入し、データ効率の学習を支援するためにLiDAR-カメラ対応を組み込んだ。
結果は、LaserMix++が完全に教師付き代替よりも優れており、5倍のアノテーションで同等の精度を実現していることを示している。
この大幅な進歩は、LiDARベースの3Dシーン理解システムにおける広範囲なラベル付きデータへの依存を減らすための半教師付きアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-08T17:59:53Z) - LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception Network for Autonomous Driving [12.713417063678335]
本稿では,LiDARに基づくオブジェクト検出,意味論,動作セグメンテーションのためのリアルタイムマルチタスク畳み込みニューラルネットワークを提案する。
オブジェクト検出を選択的に改善するためのセマンティック・ウェイト・アンド・ガイダンス(SWAG)モジュールを提案する。
我々は,2つのタスク,セマンティックとモーションセグメンテーション,および3Dオブジェクト検出のための最先端性能に近い2つのタスクに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-07-17T21:22:17Z) - SUIT: Learning Significance-guided Information for 3D Temporal Detection [15.237488449422008]
フレーム間の情報融合のためのスパース機能として時間的情報を単純化するSUIT(Significance-gUided Information for 3D Temporal Detection)を学習する。
大規模なnuScenesとデータセットにおいて、SUITは時間融合のメモリとコストを大幅に削減するだけでなく、最先端のベースラインよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-07-04T16:22:10Z) - MotionBEV: Attention-Aware Online LiDAR Moving Object Segmentation with
Bird's Eye View based Appearance and Motion Features [5.186531650935954]
我々は、LiDAR移動物体セグメンテーションのための高速かつ正確なフレームワークであるMotionBEVを紹介する。
提案手法では,3次元LiDARスキャンを2次元極性BEV表現に変換し,計算効率を向上させる。
我々は、外観・動作特徴からLiDAR時間情報を適応的に融合させるために、AMCM(Adearance-Motion Co-attention Module)でブリッジされたデュアルブランチネットワークを使用する。
論文 参考訳(メタデータ) (2023-05-12T09:28:09Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
Ret3Dと呼ばれるシンプルで効率的で効果的な2段階検出器を導入する。
Ret3Dの中核は、新しいフレーム内およびフレーム間関係モジュールの利用である。
無視できる余分なオーバーヘッドにより、Ret3Dは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-18T03:48:58Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
本稿では,ポイントクラウド領域における効果的な単視分割フレームワークとして機能する動的シフトネットワーク(DS-Net)を提案する。
提案するDS-Netは,両タスクの現在の最先端手法よりも優れた精度を実現する。
DS-Netを4次元パノプティカルLiDARセグメンテーションに拡張し、一列のLiDARフレーム上で時間的に統一されたインスタンスクラスタリングを行う。
論文 参考訳(メタデータ) (2022-03-14T15:25:42Z) - Learning Moving-Object Tracking with FMCW LiDAR [53.05551269151209]
新たに開発したLiDARセンサである周波数変調連続波(FMCW)を用いた学習型移動物体追跡手法を提案する。
ラベルが与えられた場合,同じインスタンスから機能を埋め込みスペースにまとめて,異なるインスタンスから機能を分離してトラッキング品質を向上させる,対照的な学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-02T09:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。