論文の概要: Knowledge Refinement via Interaction Between Search Engines and Large
Language Models
- arxiv url: http://arxiv.org/abs/2305.07402v1
- Date: Fri, 12 May 2023 11:58:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 13:09:07.855403
- Title: Knowledge Refinement via Interaction Between Search Engines and Large
Language Models
- Title(参考訳): 検索エンジンと大規模言語モデル間の相互作用による知識のリファインメント
- Authors: Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen, Can Xu, Guodong
Long, Dongyan Zhao, Daxin Jiang
- Abstract要約: InteRは、検索エンジン(SE)と大規模言語モデル(LLM)の相互作用を通じて知識の洗練を促進する新しいフレームワークである。
InteRは、関連性判定によらず、最先端の手法よりも優れたゼロショット文書検索性能を実現する。
- 参考スコア(独自算出の注目度): 110.32754416072659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information retrieval (IR) plays a crucial role in locating relevant
resources from vast amounts of data, and its applications have evolved from
traditional knowledge bases to modern search engines (SEs). The emergence of
large language models (LLMs) has further revolutionized the field by enabling
users to interact with search systems in natural language. In this paper, we
explore the advantages and disadvantages of LLMs and SEs, highlighting their
respective strengths in understanding user-issued queries and retrieving
up-to-date information. To leverage the benefits of both paradigms while
circumventing their limitations, we propose InteR, a novel framework that
facilitates knowledge refinement through interaction between SEs and LLMs.
InteR allows SEs to refine knowledge in query using LLM-generated summaries and
enables LLMs to enhance prompts using SE-retrieved documents. This iterative
refinement process augments the inputs of SEs and LLMs, leading to more
accurate retrieval. Experimental evaluations on two large-scale retrieval
benchmarks demonstrate that InteR achieves superior zero-shot document
retrieval performance compared to state-of-the-art methods, regardless of the
use of relevance judgement.
- Abstract(参考訳): 情報検索(IR)は大量のデータから関連資源を抽出する上で重要な役割を担い、その応用は従来の知識ベースから現代の検索エンジン(SE)へと進化してきた。
大規模言語モデル(llms)の出現は、ユーザーが自然言語で検索システムと対話できるようにすることで、この分野をさらに変革させた。
本稿では,LLMとSEの長所と短所を考察し,ユーザ発行クエリの理解と最新情報検索におけるそれぞれの強みを強調した。
制約を回避しつつ両方のパラダイムの利点を活用するために,SEとLLMの相互作用を通じて知識の洗練を促進する新しいフレームワークであるInteRを提案する。
InteRは、SEがLLM生成したサマリを使用してクエリの知識を洗練し、SE検索されたドキュメントを使用したプロンプトの強化を可能にする。
この反復的精錬プロセスはSEとLSMの入力を増大させ、より正確な検索につながる。
2つの大規模検索ベンチマークによる実験結果から,InteRは関連性判定によらず,最先端の手法よりも優れたゼロショット文書検索性能が得られることが示された。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々は,MLLMレトリバーが提示するモダリティバイアスを軽減するために,モダリティを考慮したハードネガティブマイニングを提案する。
論文 参考訳(メタデータ) (2024-11-04T20:06:34Z) - Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models [1.3980986259786221]
本稿では,既存のシステムにおけるLarge Language Models(LLM)の統合について検討する。
LLMの高度な自然言語理解機能を活用することで、Webシステム内のRDFエンティティ抽出を改善する。
本手法の評価は,ユーザクエリに対するシステム表現性と応答精度の顕著な向上を示す。
論文 参考訳(メタデータ) (2024-09-24T16:31:33Z) - Redefining Information Retrieval of Structured Database via Large Language Models [10.117751707641416]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Self-Retrieval: End-to-End Information Retrieval with One Large Language Model [97.71181484082663]
本稿では,新たなLLM駆動情報検索アーキテクチャであるSelf-Retrievalを紹介する。
自己検索は、自己教師付き学習を通じて検索コーパスを内部化し、検索プロセスをシーケンシャルな通過生成に変換し、再ランク付けのための関連性評価を行う。
論文 参考訳(メタデータ) (2024-02-23T18:45:35Z) - ReSLLM: Large Language Models are Strong Resource Selectors for
Federated Search [35.44746116088232]
フェデレーション検索は、Retrieval-Augmented Generationパイプラインのコンテキストにおいて、ますます重要になる。
現在のSOTA資源選択手法は特徴に基づく学習手法に依存している。
ゼロショット環境でのフェデレーション検索における資源選択を促進するために,ReSLLMを提案する。
論文 参考訳(メタデータ) (2024-01-31T07:58:54Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
我々はReinforced Retrieval Augmented Machine Learning (RRAML)と呼ばれる新しいフレームワークを提案する。
RRAMLは、大規模な言語モデルの推論機能と、巨大なユーザが提供するデータベースから目的に構築された検索者によって取得された情報を統合する。
この論文で概説された研究課題は、AIの分野に大きな影響を与える可能性があると信じている。
論文 参考訳(メタデータ) (2023-07-24T13:51:19Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。