論文の概要: Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation
- arxiv url: http://arxiv.org/abs/2411.07021v2
- Date: Sat, 16 Nov 2024 16:46:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:07.459071
- Title: Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation
- Title(参考訳): Invar-RAG: より良い生成のための不変LLM整列検索
- Authors: Ziwei Liu, Liang Zhang, Qian Li, Jianghua Wu, Guangxu Zhu,
- Abstract要約: Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
- 参考スコア(独自算出の注目度): 43.630437906898635
- License:
- Abstract: Retrieval-augmented generation (RAG) has shown impressive capability in providing reliable answer predictions and addressing hallucination problems. A typical RAG implementation uses powerful retrieval models to extract external information and large language models (LLMs) to generate answers. In contrast, recent LLM-based retrieval has gained attention for its substantial improvements in information retrieval (IR) due to the LLMs' semantic understanding capability. However, directly applying LLM to RAG systems presents challenges. This may cause feature locality problems as massive parametric knowledge can hinder effective usage of global information across the corpus; for example, an LLM-based retriever often inputs document summaries instead of full documents. Moreover, various pre-trained tasks in LLMs introduce variance, further weakening performance as a retriever. To address these issues, we propose a novel two-stage fine-tuning architecture called Invar-RAG. In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning to tackle feature locality issues. To enhance retrieval performance, we develop two patterns (invariant and variant patterns) and an invariance loss to reduce LLM variance. In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information. Experimental results show that Invar-RAG significantly outperforms existing baselines across three open-domain question answering (ODQA) datasets. Code is available in the Supplementary Material for reproducibility.
- Abstract(参考訳): Retrieval-augmented Generation (RAG)は、信頼性の高い回答予測と幻覚問題への対処能力を示す。
典型的なRAG実装では、強力な検索モデルを使用して外部情報と大きな言語モデル(LLM)を抽出し、回答を生成する。
対照的に、最近のLLMに基づく検索は、LLMの意味理解能力による情報検索(IR)の大幅な改善により注目されている。
しかし、RAGシステムに直接LLMを適用することには課題がある。
例えば、LLMベースのレトリバーは、フルドキュメントの代わりに文書要約をしばしば入力する。
さらに、LLMにおける各種事前訓練タスクは分散を導入し、レトリバーとしての性能をさらに低下させる。
これらの課題に対処するため,Invar-RAGと呼ばれる2段階のファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合して、特徴局所性問題に取り組み、LLMベースの検索器を構築する。
検索性能を向上させるため,LLM分散を低減するために2つのパターン(不変パターンと変動パターン)と不変損失を開発する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
実験の結果,Invar-RAGは3つのオープンドメイン質問応答(ODQA)データセットで既存のベースラインを著しく上回ることがわかった。
コードは再現性のために補足資料で入手できる。
関連論文リスト
- mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
大規模言語モデル(LLM)は、内部(パラメトリック)知識にのみ依存して、事実的な回答を生成するのに苦労することが多い。
この制限に対処するため、Retrieval-Augmented Generation (RAG)システムでは、外部ソースから関連情報を検索することでLLMを強化している。
我々はLLMのランキング機能を活用してW-RAGを提案する。
論文 参考訳(メタデータ) (2024-08-15T22:34:44Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - R^2AG: Incorporating Retrieval Information into Retrieval Augmented Generation [11.890598082534577]
Retrieval augmented generation (RAG) は、検索者によって提供される外部文書で大規模言語モデル(LLM)を拡張するために、多くのシナリオで適用されてきた。
本稿では,R$2$AGを提案する。R$2$AGは,検索情報を検索用拡張生成に組み込む新しい拡張RAGフレームワークである。
論文 参考訳(メタデータ) (2024-06-19T06:19:48Z) - CtrlA: Adaptive Retrieval-Augmented Generation via Inherent Control [26.21425058462886]
大規模言語モデル(LLM)の幻覚を、検索された外部知識で緩和するための有望な解決策として、検索拡張世代(RAG)が出現している。
本稿では,適応的なRAGを表現的視点から解決し,固有な制御ベースフレームワークであるnameを開発するための最初の試みについて述べる。
実験により、名前は様々なタスクにおいて既存の適応RAG法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-29T03:17:16Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。