tFold-TR: Combining Deep Learning Enhanced Hybrid Potential Energy for
Template-Based Modelling Structure Refinement
- URL: http://arxiv.org/abs/2105.04350v1
- Date: Mon, 10 May 2021 13:32:12 GMT
- Title: tFold-TR: Combining Deep Learning Enhanced Hybrid Potential Energy for
Template-Based Modelling Structure Refinement
- Authors: Liangzhen Zheng, Haidong Lan, Tao Shen, Jiaxiang Wu, Sheng Wang, Wei
Liu, Junzhou Huang
- Abstract summary: The current template-based modeling approach suffers from two important problems.
The accuracy of the distance pairs from different regions of the template varies, and this information is not well introduced into the modeling.
Two neural network models predict the distance information of the missing regions and the accuracy of the distance pairs of different regions in the template modeling structure.
- Score: 53.98034511648985
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Proteins structure prediction has long been a grand challenge over the past
50 years, owing to its board scientific and application interests. There are
two major types of modelling algorithm, template-free modelling and
template-based modelling, which is suitable for easy prediction tasks, and is
widely adopted in computer aided drug discoveries for drug design and
screening. Although it has been several decades since its first edition, the
current template-based modeling approach suffers from two important problems:
1) there are many missing regions in the template-query sequence alignment, and
2) the accuracy of the distance pairs from different regions of the template
varies, and this information is not well introduced into the modeling. To solve
the two problems, we propose a structural optimization process based on
template modelling, introducing two neural network models predict the distance
information of the missing regions and the accuracy of the distance pairs of
different regions in the template modeling structure. The predicted distances
and residue pairwise specific accuracy information are incorporated into the
potential energy function for structural optimization, which significantly
improves the qualities of the original template modelling decoys.
Related papers
- ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes.
Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection.
arXiv Detail & Related papers (2023-05-13T00:03:59Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - Manifold Alignment-Based Multi-Fidelity Reduced-Order Modeling Applied
to Structural Analysis [0.8808021343665321]
This work presents the application of a recently developed parametric, non-intrusive, and multi-fidelity reduced-order modeling method on high-dimensional displacement and stress fields.
Results show that outputs from structural simulations using incompatible grids, or related yet different topologies, are easily combined into a single predictive model.
The new multi-fidelity reduced-order model achieves a relatively higher predictive accuracy at a lower computational cost when compared to a single-fidelity model.
arXiv Detail & Related papers (2022-06-14T15:28:21Z) - On generative models as the basis for digital twins [0.0]
A framework is proposed for generative models as a basis for digital twins or mirrors of structures.
The proposal is based on the premise that deterministic models cannot account for the uncertainty present in most structural modelling applications.
arXiv Detail & Related papers (2022-03-08T20:34:56Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.